-
高精度重力场测绘对地质调查、资源勘探、大地水准面建模等领域具有重要意义. 地面静态绝对重力测绘效率低, 无法覆盖河流、湖泊、山脉等地形条件复杂的区域. 机载绝对重力测绘可以在复杂地形实现快速、连续重力测量, 满足实际应用需求. 本文报道了一种基于量子重力仪的航空绝对重力测量系统, 开展了机载动态绝对重力测量实验. 在飞行高度1022 m、航速240 km/h条件下, 得到3 km滤波后整段测线重力值变化的标准差约为8.86 mGal, 评估了实测重力值与EGM2008模型残差的标准差, 经计算约为8.16 mGal. 本文结果验证了量子重力仪在航空动态绝对重力测量方向的可行性, 为复杂地形条件下的高精度、高分辨率重力场测绘提供了一种新的技术手段.High-precision gravity field mapping plays a critical role in geological survey, resource exploration, and geoid modeling. The traditional ground-based static absolute gravity measurements possess high accuracy, but they are fundamentally constrained by low operational efficiency and inability to survey complex terrains such as river networks, lakes, and mountainous regions. This study tries to address these limitations through the development of an airborne absolute gravity measurement system based on quantum gravimeters. At a flight altitude of 1022 m and a speed of 240 km/h of the airplane, after a filtering process of 3 km, the measured gravity value shows a standard deviation of approximately 8.86 mGal. Furthermore, a comparative analysis with the EGM2008 gravity model shows a residual standard deviation of 8.16 mGal, validating the consistency of the system with established geophysical references. The experimental results confirm the operational feasibility of quantum gravimeters in scenarios of airborne dynamic measurement, demonstrating the viability of this technological framework for high-resolution gravity field mapping.
-
Keywords:
- quantum gravimeter /
- airborne absolute gravity measurement /
- cold atom /
- atom interference
-
图 3 倾斜调制实验数据(图中黑点为实测重力值, 红色曲线为正弦函数拟合曲线) (a) 重力值随横摇角度变化; (b) 重力值随纵摇角度变化
Fig. 3. Experimental data for tilt modulation, the black dots are the measured gravity values and the red curve is the fitted curve with the sine function: (a) Change of measured gravity values as the roll angle; (b) change of measured gravity values as the pitch angle.
图 4 (a) 不同T的拟合曲线, 其中实心红、蓝、黑点分别为T = 10 ms, T = 12 ms, T = 14 ms时的原子布居数, 实线为其对应拟合曲线; (b) 静态测量灵敏度; (c) 静态测量重力值
Fig. 4. (a) The fitted curves for different T, where the red, blue, and black dots are the atomic population at T = 10 ms, T = 12 ms, and T = 14 ms, respectively, the solid lines are their corresponding fitted curves; (b) static measured sensitivity; (c) static measured gravity values.
图 8 飞行环境下的温湿度变化 (a), (b) 分别是温湿度变化曲线, 其中红线、蓝线、黑线分别为AG-1探头、机舱、AG-1控制器内部的温湿度变化; (c)光路模块的温湿度变化
Fig. 8. Variations of temperature and humidity during the flight campaign: (a), (b) Temperature and humidity change curves, where the red, blue and black lines are the data measured in AG-1 sensor, cabin and AG-1 controller, respectively; (c) temperature and humidity variation in the optical module.
图 9 机载绝对重力测量结果 (a) 重力数据处理结果(灰色实线为原始重力数据, 蓝色实线为Eötvös修正量, 红色实线为经过Eötvös修正和滤波后的修正重力值); (b) 实测航空重力数据与模型计算数据的对比(黑色实线为基于EIGEN-6C2模型计算的重力数据, 蓝色实线为基于EGM2008模型计算的重力数据, 红色实线为实测的航空重力数据)
Fig. 9. Measurement results of absolute gravity with airborne platform: (a) Gravity correction results. The gray line denotes the original gravity data, the blue line represents the gravity value dues to Eötvös correction, while the red line illustrates the gravity values after the Eötvös correction and filtering; (b) comparison of measured airborne gravity data with the data obtained with gravity models, black line is the gravity data calculated by the EIGEN-6C2 gravity model, blue line is the gravity data calculated by EGM2008 gravity model, and red line are the measured gravity airborne data.
表 1 噪声来源及其引起的重力值偏差
Table 1. Budget of noise sources and their resulted gravity deviations.
噪声来源 引起的重力值偏差/mGal 振动噪声 >103 Eötvös效应 0—37 惯性稳定平台姿态控制残余噪声 ≈10–3 飞行高度变化 0—0.8 -
[1] Zhang C G, Chen J G, Song M Y, Wang J K, Yuan B Q 2015 Pol. Marit. Res. 22 100
Google Scholar
[2] Nusbaum U, Rusnak I, Klein I 2019 Navigation-US 66 681
Google Scholar
[3] 张倩文, 徐亚, 褚伟, 路书鹏 2024 中国科学: 地球科学 67 1836
Google Scholar
Zhang Q W, Xu Y, Chu W, Lu S P 2024 Sci. China-Earth Sci. 67 1836
Google Scholar
[4] Reager J T, Thomas B F, Famiglietti J S 2014 Nat. Geosci. 7 588
Google Scholar
[5] Vidal-Vega A I, Trejo-Soto M E, Tocho C N, Romero-Andrade R, Nayak K 2024 J. South Am. Earth Sci. 148 105192
Google Scholar
[6] Elshewy M A, Thanh P T, Elsheshtawy A M, Refaat M, Freeshah M 2024 Egypt. J. Remote Sens. Space Sci. 27 656
[7] Mcleod D P, King B T, Stedman G E, Schreiber K U, Vvrebb T H 2001 Fluct. Noise Lett. 1 R41
Google Scholar
[8] Zhu H R, Huang P W, Gao B, Tang B, Chen X, Hong J Q, Ang J, Zhong J Q 2024 Opt. Express 32 26157
Google Scholar
[9] Wu B, Li D R, Zhou Y, Zhu D, Zhao Y P, Qiao Z K, Cheng B, Niu J Y, Guo X C, Wang X L, Lin Q 2024 IEEE Sens. J. 24 9536
Google Scholar
[10] Ruan C J, Zhuang W, Yao J M, Zhao Y, Ma Z H, Yi C, Tian Q, Wu S Q, Fang F, Wen Y H 2024 Sensors 24 2395
Google Scholar
[11] Li C Y, Long J B, Huang M Q, Chen B, Yang Y M, Jiang X, Xiang C F, Ma Z L, He D Q, Chen L K, Chen S 2023 Phys. Rev. A 108 032811
Google Scholar
[12] Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300
Google Scholar
[13] Chen J L, Cazenave A, Dahle C, Llovel W, Panet I, Pfeffer J, Moreira L 2022 Surv. Geophys. 43 305
Google Scholar
[14] Huang C, Li A, Qin F, Gong W, Che H, Chen X, Fang J, Wang W, Zhou Y 2024 IEEE Sens. J. 24 32368
Google Scholar
[15] Huang C F, Li A, Qin F J, Fang J, Chen X 2023 Meas. Sci. Technol. 34 11
[16] Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 20
Google Scholar
[17] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627
Google Scholar
[18] Bidel Y, Zahzam N, Bresson A, Blanchard C, Bonnin A, Bernard J, Cadoret M, Jensen T E, Forsberg R, Salaun C, Lucas S, Lequentrec-Lalancette M F, Rouxel D, Gabalda G, Seoane L, Vu D T, Bruinsma S, Bonvalot S 2023 J. Geophys. Res. Solid Earth 128 1
[19] Wu B, Zhao Y P, Zhou Y, Yuan W W, Li D R, Bao S N, Zhu D, Cheng B, Wu L Y, Zhou J C, Qiao Z K, Wang X L, Lin Q 2024 IEEE Sens. J. 24 23527
Google Scholar
[20] Qiao Z K, Yuan P, Hu R, Zhou H, Wang Q Y, Zhang J J, Zhou H Q, Zhu L Y, Zhu D, Shi H Y, Zhou F, Wu B, Zhou Y, Lin Q 2024 IEEE Sens. J. 24 10620
Google Scholar
[21] Zhou Y, Wang W Z, Ge G G, Li J T, Zhang D F, He M, Tang B, Zhong J Q, Zhou L, Li R B, Mao N, Che H, Qian L Y, Li Y, Qin F J, Fang J, Chen X, Wang J, Zhan M S 2024 Sensors 24 1016
Google Scholar
[22] Wu B, Zhang C, Wang K N, Cheng B, Zhu D, Li R, Wang X L, Lin Q, Qiao Z K, Zhou Y 2023 IEEE Sens. J. 23 24292
Google Scholar
[23] Zhou Y, Wu L Y, Wu B, Cheng B, Wang H L, Chen L W, Gao S T, Lin Q 2020 Geophysics 85 G115
Google Scholar
[24] 赵远, 郭梅影, 许云鹏, 胡栋, 王宇, 杨永军 2024 计测技术 44 115
Google Scholar
Zhao Y, Guo M Y, Xu Y P, Hu D, Wang Y, Yang Y J 2024 Metrol. Meas. Technol. 44 115
Google Scholar
[25] Zhu D, Liu N K, Cheng B, Cao P F, Wu B, Wang K N, Wu L M, Weng K X, Zhou Y, Bian J L, Wang X L, Lin Q 2024 Opt. Express 32 40554
Google Scholar
[26] Chen P J, Jiang M R, lv X F, Zhou H, Yang D, Zhou Y, Jin Z F, Peng S P 2024 Heliyon 10 e23936
Google Scholar
[27] Chen P J, Zhou Y, Zhu D, Wang K N, Zhang C, Wang K, Peng S P, Cheng B, Wu B, Lin Q 2024 Appl. Phys. B 130 111
计量
- 文章访问数: 441
- PDF下载量: 39
- 被引次数: 0