搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子重力仪的航空绝对重力测量

翟晨杰 王晶 周俊杰 王毓 唐晓明 周寅 张灿 李瑞 舒晴 王凯楠 王双全 金子骍 华珊 孙羿人 王正豪 马志祥 蔡铭豪 王肖隆 吴彬 林强

引用本文:
Citation:

基于量子重力仪的航空绝对重力测量

翟晨杰, 王晶, 周俊杰, 王毓, 唐晓明, 周寅, 张灿, 李瑞, 舒晴, 王凯楠, 王双全, 金子骍, 华珊, 孙羿人, 王正豪, 马志祥, 蔡铭豪, 王肖隆, 吴彬, 林强

Airborne absolute gravity measurements based on quantum gravimeter

ZHAI Chenjie, WANG Jing, ZHOU Junjie, WANG Yu, TANG Xiaoming, ZHOU Yin, ZHANG Can, LI Rui, SHU Qing, WANG Kainan, WANG Shuangquan, JIN Zixing, HUA Shan, SUN Yiren, WANG Zhenghao, MA Zhixiang, CAI Minghao, WANG Xiaolong, WU Bin, LIN Qiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高精度重力场测绘对地质调查、资源勘探、大地水准面建模等领域具有重要意义. 地面静态绝对重力测绘效率低, 无法覆盖河流、湖泊、山脉等地形条件复杂的区域. 机载绝对重力测绘可以在复杂地形实现快速、连续重力测量, 满足实际应用需求. 本文报道了一种基于量子重力仪的航空绝对重力测量系统, 开展了机载动态绝对重力测量实验. 在飞行高度1022 m、航速240 km/h条件下, 得到3 km滤波后整段测线重力值变化的标准差约为8.86 mGal, 评估了实测重力值与EGM2008模型残差的标准差, 经计算约为8.16 mGal. 本文结果验证了量子重力仪在航空动态绝对重力测量方向的可行性, 为复杂地形条件下的高精度、高分辨率重力场测绘提供了一种新的技术手段.
    High-precision gravity field mapping plays a critical role in geological survey, resource exploration, and geoid modeling. The traditional ground-based static absolute gravity measurements possess high accuracy, but they are fundamentally constrained by low operational efficiency and inability to survey complex terrains such as river networks, lakes, and mountainous regions. This study tries to address these limitations through the development of an airborne absolute gravity measurement system based on quantum gravimeters. At a flight altitude of 1022 m and a speed of 240 km/h of the airplane, after a filtering process of 3 km, the measured gravity value shows a standard deviation of approximately 8.86 mGal. Furthermore, a comparative analysis with the EGM2008 gravity model shows a residual standard deviation of 8.16 mGal, validating the consistency of the system with established geophysical references. The experimental results confirm the operational feasibility of quantum gravimeters in scenarios of airborne dynamic measurement, demonstrating the viability of this technological framework for high-resolution gravity field mapping.
  • 图 1  机载绝对重力测量系统组成及其测量原理图

    Fig. 1.  System composition of the airborne absolute gravity measurement system and the basic measurement principle.

    图 2  测试飞机及重力测量系统现场照片

    Fig. 2.  Picture of aircraft and the absolute gravity measurement systems.

    图 3  倾斜调制实验数据(图中黑点为实测重力值, 红色曲线为正弦函数拟合曲线) (a) 重力值随横摇角度变化; (b) 重力值随纵摇角度变化

    Fig. 3.  Experimental data for tilt modulation, the black dots are the measured gravity values and the red curve is the fitted curve with the sine function: (a) Change of measured gravity values as the roll angle; (b) change of measured gravity values as the pitch angle.

    图 4  (a) 不同T的拟合曲线, 其中实心红、蓝、黑点分别为T = 10 ms, T = 12 ms, T = 14 ms时的原子布居数, 实线为其对应拟合曲线; (b) 静态测量灵敏度; (c) 静态测量重力值

    Fig. 4.  (a) The fitted curves for different T, where the red, blue, and black dots are the atomic population at T = 10 ms, T = 12 ms, and T = 14 ms, respectively, the solid lines are their corresponding fitted curves; (b) static measured sensitivity; (c) static measured gravity values.

    图 5  飞行路线(红线为重力测线, 橙线为往返路线)

    Fig. 5.  Trace of flight. The red line is the pratical measurement route, and the orange line is the take-off and landing route.

    图 6  飞机的状态参数 (a) 高度; (b) 速度; (c) 横滚角; (d) 俯仰角

    Fig. 6.  Detailed parameters of the airplane during the flight: (a) Flight altitude; (b) flight speed; (c) roll angle; (d) pitch angle.

    图 7  飞行环境下的振动信号 (a) 时域振动信号; (b) 振动信号功率谱

    Fig. 7.  Vibration signals in the case of flying: (a) Time-domain vibration signals; (b) power spectrum of vibration signals.

    图 8  飞行环境下的温湿度变化 (a), (b) 分别是温湿度变化曲线, 其中红线、蓝线、黑线分别为AG-1探头、机舱、AG-1控制器内部的温湿度变化; (c)光路模块的温湿度变化

    Fig. 8.  Variations of temperature and humidity during the flight campaign: (a), (b) Temperature and humidity change curves, where the red, blue and black lines are the data measured in AG-1 sensor, cabin and AG-1 controller, respectively; (c) temperature and humidity variation in the optical module.

    图 9  机载绝对重力测量结果 (a) 重力数据处理结果(灰色实线为原始重力数据, 蓝色实线为Eötvös修正量, 红色实线为经过Eötvös修正和滤波后的修正重力值); (b) 实测航空重力数据与模型计算数据的对比(黑色实线为基于EIGEN-6C2模型计算的重力数据, 蓝色实线为基于EGM2008模型计算的重力数据, 红色实线为实测的航空重力数据)

    Fig. 9.  Measurement results of absolute gravity with airborne platform: (a) Gravity correction results. The gray line denotes the original gravity data, the blue line represents the gravity value dues to Eötvös correction, while the red line illustrates the gravity values after the Eötvös correction and filtering; (b) comparison of measured airborne gravity data with the data obtained with gravity models, black line is the gravity data calculated by the EIGEN-6C2 gravity model, blue line is the gravity data calculated by EGM2008 gravity model, and red line are the measured gravity airborne data.

    表 1  噪声来源及其引起的重力值偏差

    Table 1.  Budget of noise sources and their resulted gravity deviations.

    噪声来源 引起的重力值偏差/mGal
    振动噪声 >103
    Eötvös效应 0—37
    惯性稳定平台姿态控制残余噪声 ≈10–3
    飞行高度变化 0—0.8
    下载: 导出CSV
    Baidu
  • [1]

    Zhang C G, Chen J G, Song M Y, Wang J K, Yuan B Q 2015 Pol. Marit. Res. 22 100Google Scholar

    [2]

    Nusbaum U, Rusnak I, Klein I 2019 Navigation-US 66 681Google Scholar

    [3]

    张倩文, 徐亚, 褚伟, 路书鹏 2024 中国科学: 地球科学 67 1836Google Scholar

    Zhang Q W, Xu Y, Chu W, Lu S P 2024 Sci. China-Earth Sci. 67 1836Google Scholar

    [4]

    Reager J T, Thomas B F, Famiglietti J S 2014 Nat. Geosci. 7 588Google Scholar

    [5]

    Vidal-Vega A I, Trejo-Soto M E, Tocho C N, Romero-Andrade R, Nayak K 2024 J. South Am. Earth Sci. 148 105192Google Scholar

    [6]

    Elshewy M A, Thanh P T, Elsheshtawy A M, Refaat M, Freeshah M 2024 Egypt. J. Remote Sens. Space Sci. 27 656

    [7]

    Mcleod D P, King B T, Stedman G E, Schreiber K U, Vvrebb T H 2001 Fluct. Noise Lett. 1 R41Google Scholar

    [8]

    Zhu H R, Huang P W, Gao B, Tang B, Chen X, Hong J Q, Ang J, Zhong J Q 2024 Opt. Express 32 26157Google Scholar

    [9]

    Wu B, Li D R, Zhou Y, Zhu D, Zhao Y P, Qiao Z K, Cheng B, Niu J Y, Guo X C, Wang X L, Lin Q 2024 IEEE Sens. J. 24 9536Google Scholar

    [10]

    Ruan C J, Zhuang W, Yao J M, Zhao Y, Ma Z H, Yi C, Tian Q, Wu S Q, Fang F, Wen Y H 2024 Sensors 24 2395Google Scholar

    [11]

    Li C Y, Long J B, Huang M Q, Chen B, Yang Y M, Jiang X, Xiang C F, Ma Z L, He D Q, Chen L K, Chen S 2023 Phys. Rev. A 108 032811Google Scholar

    [12]

    Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [13]

    Chen J L, Cazenave A, Dahle C, Llovel W, Panet I, Pfeffer J, Moreira L 2022 Surv. Geophys. 43 305Google Scholar

    [14]

    Huang C, Li A, Qin F, Gong W, Che H, Chen X, Fang J, Wang W, Zhou Y 2024 IEEE Sens. J. 24 32368Google Scholar

    [15]

    Huang C F, Li A, Qin F J, Fang J, Chen X 2023 Meas. Sci. Technol. 34 11

    [16]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 20Google Scholar

    [17]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 627Google Scholar

    [18]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Bonnin A, Bernard J, Cadoret M, Jensen T E, Forsberg R, Salaun C, Lucas S, Lequentrec-Lalancette M F, Rouxel D, Gabalda G, Seoane L, Vu D T, Bruinsma S, Bonvalot S 2023 J. Geophys. Res. Solid Earth 128 1

    [19]

    Wu B, Zhao Y P, Zhou Y, Yuan W W, Li D R, Bao S N, Zhu D, Cheng B, Wu L Y, Zhou J C, Qiao Z K, Wang X L, Lin Q 2024 IEEE Sens. J. 24 23527Google Scholar

    [20]

    Qiao Z K, Yuan P, Hu R, Zhou H, Wang Q Y, Zhang J J, Zhou H Q, Zhu L Y, Zhu D, Shi H Y, Zhou F, Wu B, Zhou Y, Lin Q 2024 IEEE Sens. J. 24 10620Google Scholar

    [21]

    Zhou Y, Wang W Z, Ge G G, Li J T, Zhang D F, He M, Tang B, Zhong J Q, Zhou L, Li R B, Mao N, Che H, Qian L Y, Li Y, Qin F J, Fang J, Chen X, Wang J, Zhan M S 2024 Sensors 24 1016Google Scholar

    [22]

    Wu B, Zhang C, Wang K N, Cheng B, Zhu D, Li R, Wang X L, Lin Q, Qiao Z K, Zhou Y 2023 IEEE Sens. J. 23 24292Google Scholar

    [23]

    Zhou Y, Wu L Y, Wu B, Cheng B, Wang H L, Chen L W, Gao S T, Lin Q 2020 Geophysics 85 G115Google Scholar

    [24]

    赵远, 郭梅影, 许云鹏, 胡栋, 王宇, 杨永军 2024 计测技术 44 115Google Scholar

    Zhao Y, Guo M Y, Xu Y P, Hu D, Wang Y, Yang Y J 2024 Metrol. Meas. Technol. 44 115Google Scholar

    [25]

    Zhu D, Liu N K, Cheng B, Cao P F, Wu B, Wang K N, Wu L M, Weng K X, Zhou Y, Bian J L, Wang X L, Lin Q 2024 Opt. Express 32 40554Google Scholar

    [26]

    Chen P J, Jiang M R, lv X F, Zhou H, Yang D, Zhou Y, Jin Z F, Peng S P 2024 Heliyon 10 e23936Google Scholar

    [27]

    Chen P J, Zhou Y, Zhu D, Wang K N, Zhang C, Wang K, Peng S P, Cheng B, Wu B, Lin Q 2024 Appl. Phys. B 130 111

  • [1] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔.  , doi: 10.7498/aps.74.20241348
    [2] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载.  , doi: 10.7498/aps.73.20240182
    [3] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量.  , doi: 10.7498/aps.73.20241215
    [4] 叶留贤, 许云鹏, 王巧薇, 程冰, 吴彬, 王河林, 林强. 基于激光双边带抑制的冷原子干涉相移优化与控制.  , doi: 10.7498/aps.72.20221711
    [5] 翟荟. 基于冷原子的非平衡量子多体物理研究.  , doi: 10.7498/aps.72.20231375
    [6] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , doi: 10.7498/aps.71.20212204
    [7] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究.  , doi: 10.7498/aps.71.20220267
    [8] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究.  , doi: 10.7498/aps.71.20220113
    [9] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展.  , doi: 10.7498/aps.70.20201561
    [10] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , doi: 10.7498/aps.70.20201522
    [11] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , doi: 10.7498/aps.69.20191765
    [12] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度.  , doi: 10.7498/aps.68.20190749
    [13] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , doi: 10.7498/aps.67.20181121
    [14] 黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌. 平面自旋压缩态的产生与原子干涉的机理.  , doi: 10.7498/aps.64.160304
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却.  , doi: 10.7498/aps.57.6227
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应.  , doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  441
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-21
  • 修回日期:  2025-01-18
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map