搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学阱中Λ增强型灰色黏团冷却辅助原子装载

刘岩鑫 王志辉 管世军 王勤霞 张鹏飞 李刚 张天才

引用本文:
Citation:

光学阱中Λ增强型灰色黏团冷却辅助原子装载

刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才

Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process

Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai
PDF
HTML
导出引用
  • Λ增强型灰色黏团冷却技术(Λ gray molasses cooling, Λ- GMC)已被广泛用于制备低于亚多普勒温度极限的冷原子样品实验中. 本文设计搭建了宽范围、快速调谐的激光系统, 其调谐范围最高可达$ 600 {\text{ MHz}} $. 基于该激光系统, 于光学微腔中心通过铯原子D2线Λ- GMC冷却辅助腰斑大小为15 μm的交叉偶极阱中原子的装载, 相比于传统的偏振梯度冷却辅助装载, 原子数增加了约4倍, 原子温度由$ 25 {\text{ μK}} $降低至$ 8 {\text{ μK}} $. 该实验对超冷原子样品实验制备和单原子阵列俘获等研究具有重要借鉴意义.
    Λ-enhanced gray molasses cooling (Λ-GMC) technique has been widely used in experiments to prepare cold atomic samples below the sub-Doppler temperature limit. To meet the experimental requirements of cavity quantum electrodynamics systems, we design and construct a wide-range, fast-tuning laser system by integrating tapered amplifiers, fiber phase modulators, etalon, injection locking amplification techniques etc. This laser system achieves a maximum tuning range of 600 MHz and a frequency tuning speed of 5 ns. Based on this laser system, loading atom in a crossed dipole trap assisted by cesium D2 line Λ-GMC cooling in the center of the optical microcavity is studied, and various factors affecting the atom loading are mainly as follows: laser duration $\tau $, three-dimensional magnetic field $ \left( {{B_x}, {B_y}, {B_z}} \right) $, single-photon detuning $\varDelta $, two-photon detuning $\delta $, ratio of cooling beam power to repumping beam power ${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$, and cooling beam power ${I_{{\text{cooling}}}}$. The optimal parameters in this system are follows: $ \tau = 7{\text{ ms}},\; \delta = 0.2{\text{ MHz}},\; \varDelta = 5\varGamma, \;{I_{{\text{cool}}}}/{I_{{\text{rep}}}} = 3, {\text{ and }} {I_{{\text{cool}}}} = 1.2{I_{{\text{sat}}}}. $ Comparing with traditional PGC-assisted loading, the number of atoms is increased about 4 times, and the atomic temperature decreases from $ 25{\text{ μK}} $ to $ 8{\text{ μK}} $. This experiment provides important insights for preparing ultracold atomic samples and capturing single atom arrays.
      通信作者: 李刚, gangli@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278)和山西省“1331 工程”重点学科建设基金资助的课题.
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for “1331 Project” Key Subjects Construction of Shanxi Province, China.
    [1]

    Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar

    [2]

    Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar

    [3]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar

    [4]

    Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar

    [5]

    Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar

    [6]

    Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar

    [7]

    Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar

    [8]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar

    [9]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar

    [10]

    Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar

    [11]

    Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar

    [12]

    Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar

    [13]

    Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar

    [14]

    Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar

    [15]

    Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar

    [16]

    Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar

    [17]

    Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar

    [18]

    Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar

    [21]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [22]

    Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar

    [23]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar

    [24]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar

    [25]

    Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar

    [26]

    Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar

    [27]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [28]

    Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar

  • 图 1  (a)铯原子 D2 线能级图; (b)快速、宽范围调谐激光系统产生过程, TA为锥型放大器, Laser为激光器, FPM为光纤位相调制器, Etalon为标准具, ILM为注入锁定放大, D-AOM为双通声光调制器; (c)时序图

    Fig. 1.  (a) Cesium atom D2 line energy level diagram; (b) process of generating a fast and wide-range tunable laser system, TA reprsents tapered amplifier, Laser reprsents laser source; FPM reprsents fiber phase modulator, Etalon reprsents reference cavity, ILM reprsents injection-locked amplifier, D-AOM reprsents double-acousto-optic modulators; (c) time sequence for the experiment.

    图 2  (a)原子数随激光作用时间$\tau $的变化关系; (b)原子数随磁场大小的变化关系

    Fig. 2.  (a) The relationship between the atom number and the laser duration; (b) the relationship between the atom number and the magnitude of the magnetic field.

    图 3  单光子失谐$ \varDelta $和双光子失谐$ \delta $实验优化 (a)原子数随$ \varDelta $的变化关系; (b)原子数随$ \delta $的变化关系

    Fig. 3.  Experimental optimization of single-photon detuning and two-photon detuning: (a) The relationship between the atom number and $ \varDelta $; (b) the relationship between the atom number and $ \delta $.

    图 4  激光强度优化 (a)原子数随${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$的变化关系; (b)原子数随${I_{{\text{cool}}}}$的变化关系

    Fig. 4.  Experimental optimization of the laser intensity: (a) The relationship between the atom number and ${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$; (b) the relationship between the atom number and ${I_{{\text{cool}}}}$.

    图 5  原子温度测量与评估 (a) PGC 冷却后原子温度评估; (b) PGC+Λ-GMC 组合冷却后原子温度评估

    Fig. 5.  Atomic temperature measurement and evaluation: (a) Evaluation of atomic temperature after PGC cooling; (b) evaluation of atomic temperature after combined cooling with PGC+Λ-GMC.

    图 A1  聚焦偶极阱阱深最大(Z = 0)处横截面的虚磁场梯度图. 偶极阱激光传播方向为 Z, 偏振方向为 X

    Fig. A1.  The fictitious magnetic field gradient of the transverse cuts at Z = 0 inside the focused dipole trap. The propagation direction of the dipole trap laser is into the plane (along Z), and the laser is polarized along X.

    图 B1  小角度 3D-MOT 装置示意图

    Fig. B1.  The schematic diagram of the small angle 3D-MOT set-up.

    Baidu
  • [1]

    Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar

    [2]

    Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar

    [3]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar

    [4]

    Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar

    [5]

    Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar

    [6]

    Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar

    [7]

    Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar

    [8]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar

    [9]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar

    [10]

    Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar

    [11]

    Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar

    [12]

    Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar

    [13]

    Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar

    [14]

    Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar

    [15]

    Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar

    [16]

    Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar

    [17]

    Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar

    [18]

    Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar

    [21]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [22]

    Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar

    [23]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar

    [24]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar

    [25]

    Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar

    [26]

    Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar

    [27]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [28]

    Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar

  • [1] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析.  , 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [2] 翟荟. 基于冷原子的非平衡量子多体物理研究.  , 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [3] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟.  , 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [4] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术.  , 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [6] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展.  , 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [9] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度.  , 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [10] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [11] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控.  , 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [12] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格.  , 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [13] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究.  , 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [14] 王强, 叶冲. 人工规范势下三阱玻色-爱因斯坦凝聚系统的动力学研究.  , 2012, 61(23): 230304. doi: 10.7498/aps.61.230304
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却.  , 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应.  , 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  1101
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 修回日期:  2024-03-13
  • 上网日期:  2024-04-07
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map