-
The optical lattice clock with neutral atoms occupies an outstanding position in the research field of atomic clocks, demonstrating the great potential of its performance (like the uncertainty and the stability). At present, the optical lattice clock has realized a 10-18 level of its uncertainty. In this paper, we present the realization of loading bosonic atoms 88Sr (strontium, alkaline-earth metals) into a one-dimensional (1D) optical lattice in our laboratory. The optical lattice where the atoms are trapped can make the energy level shift, called Stark shift. But there is the special optical lattice operating at the “magic” wavelength for clock transitions (5s2) 1S0-(5s5p) 3P0, which can make the same Stark light-shift for both of them, indicating a zero light-shift relative to the clock. In our experiment, Sr atoms are cooled in a two-stage cooling and its temperature can be as low as 2 μK. Then these cold atoms are confined in the Lamb-Dicke region by the lattice laser output from an amplified diode laser operating at the “magic” wavelength, 813 nm. Experimentally, it is straightforward to provide 850 mW of lattice power focused to a 38 μm beam radius. After the cold atoms have trapped in the optical lattice, the lifetime of atoms in 1D optical lattice is measured to be 270 ms. The temperature and the number are about 3.5 μK and 1.2×105 respectively. Besides, effects of the power of the lattice laser on both the number and temperature are analyzed. The number changes linearly with the laser power, while there is no obvious influence on the temperature by the power. This original and special approach for atoms trapped in the optical lattice can provide a long interrogation time for probing the clock transition. Furthermore, it may be the foundation for developing our optical lattice clock of strontium atoms.
-
Keywords:
- optical clock /
- cold atoms /
- magic wavelength /
- optical lattice
[1] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801
[2] Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
[3] Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908
[4] Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109
[5] Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802
[6] Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321
[7] Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023
[8] Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568
[9] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215
[10] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71
[11] Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201
[12] Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206
[13] Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701
[14] Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703
[15] Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202
[16] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554
[17] Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318
[18] Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]
[19] Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]
[20] Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]
[21] Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]
[22] Black E D 2001 Am. J. Phys. 69 1
[23] Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002
[24] Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001
[25] Lemond P, Wolf P 2005 Phys. Rev. A 72 033409
-
[1] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801
[2] Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
[3] Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908
[4] Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109
[5] Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802
[6] Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321
[7] Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023
[8] Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568
[9] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215
[10] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71
[11] Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201
[12] Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206
[13] Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701
[14] Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703
[15] Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202
[16] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554
[17] Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318
[18] Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]
[19] Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]
[20] Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]
[21] Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]
[22] Black E D 2001 Am. J. Phys. 69 1
[23] Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002
[24] Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001
[25] Lemond P, Wolf P 2005 Phys. Rev. A 72 033409
Catalog
Metrics
- Abstract views: 7401
- PDF Downloads: 219
- Cited By: 0