Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength

Tian Xiao Wang Ye-Bing Lu Ben-Quan Liu Hui Xu Qin-Fang Ren Jie Yin Mo-Juan Kong De-Huan Chang Hong Zhang Shou-Gang

Citation:

Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength

Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The optical lattice clock with neutral atoms occupies an outstanding position in the research field of atomic clocks, demonstrating the great potential of its performance (like the uncertainty and the stability). At present, the optical lattice clock has realized a 10-18 level of its uncertainty. In this paper, we present the realization of loading bosonic atoms 88Sr (strontium, alkaline-earth metals) into a one-dimensional (1D) optical lattice in our laboratory. The optical lattice where the atoms are trapped can make the energy level shift, called Stark shift. But there is the special optical lattice operating at the “magic” wavelength for clock transitions (5s2) 1S0-(5s5p) 3P0, which can make the same Stark light-shift for both of them, indicating a zero light-shift relative to the clock. In our experiment, Sr atoms are cooled in a two-stage cooling and its temperature can be as low as 2 μK. Then these cold atoms are confined in the Lamb-Dicke region by the lattice laser output from an amplified diode laser operating at the “magic” wavelength, 813 nm. Experimentally, it is straightforward to provide 850 mW of lattice power focused to a 38 μm beam radius. After the cold atoms have trapped in the optical lattice, the lifetime of atoms in 1D optical lattice is measured to be 270 ms. The temperature and the number are about 3.5 μK and 1.2×105 respectively. Besides, effects of the power of the lattice laser on both the number and temperature are analyzed. The number changes linearly with the laser power, while there is no obvious influence on the temperature by the power. This original and special approach for atoms trapped in the optical lattice can provide a long interrogation time for probing the clock transition. Furthermore, it may be the foundation for developing our optical lattice clock of strontium atoms.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61127901, 11474282).
    [1]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [2]

    Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [3]

    Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908

    [4]

    Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109

    [5]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802

    [6]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [7]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [8]

    Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215

    [10]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [11]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [12]

    Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206

    [13]

    Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701

    [14]

    Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703

    [15]

    Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202

    [16]

    Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554

    [17]

    Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318

    [18]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]

    [19]

    Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]

    [20]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]

    [21]

    Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]

    [22]

    Black E D 2001 Am. J. Phys. 69 1

    [23]

    Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002

    [24]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001

    [25]

    Lemond P, Wolf P 2005 Phys. Rev. A 72 033409

  • [1]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [2]

    Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [3]

    Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908

    [4]

    Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109

    [5]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802

    [6]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [7]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [8]

    Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215

    [10]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [11]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [12]

    Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206

    [13]

    Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701

    [14]

    Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703

    [15]

    Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202

    [16]

    Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554

    [17]

    Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318

    [18]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]

    [19]

    Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]

    [20]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]

    [21]

    Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]

    [22]

    Black E D 2001 Am. J. Phys. 69 1

    [23]

    Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002

    [24]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001

    [25]

    Lemond P, Wolf P 2005 Phys. Rev. A 72 033409

  • [1] Wang Liang-Wei, Liu Fang-De, Li Yun-Da, Han Wei, Meng Zeng-Ming, Zhang Jing. Construction of two-dimensional arbitrary shape 87Rb atomic array based on spatial light modulator. Acta Physica Sinica, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] Li Ting, Wang Tao, Wang Ye-Bing, Lu Ben-Quan, Lu Xiao-Tong, Yin Mo-Juan, Chang Hong. Experimental observation of quantum tunneling in shallow optical lattice. Acta Physica Sinica, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [3] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [4] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] Wen Kai, Wang Liang-Wei, Zhou Fang, Chen Liang-Chao, Wang Peng-Jun, Meng Zeng-Ming, Zhang Jing. Experimental realization of Mott insulator of ultracold 87Rb atoms in two-dimensional optical lattice. Acta Physica Sinica, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [7] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] Li Xiao-Yun, Sun Bo-Wen, Xu Zheng-Qian, Chen Jing, Yin Ya-Ling, Yin Jian-Ping. Theoritical research on optical Stark deceleration and trapping of neutral molecular beams based on modulated optical lattices. Acta Physica Sinica, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [9] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [10] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [11] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [12] Li Yan. Theory of density-density correlations between ultracold Bosons released from optical lattices. Acta Physica Sinica, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [13] Yu Xue-Cai, Wang Ping-He, Zhang Li-Xun. Atom movement in momentum dependent light dipole lattices. Acta Physica Sinica, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [14] Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong. Observation of transitions in strontium triplet state and its application in optical clock. Acta Physica Sinica, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [15] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [16] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [17] Huang Jin-Song, Chen Hai-Feng, Xie Zheng-Wei. Modulational instability of two-component dipolar Bose-Einstein condensates in an optical lattice. Acta Physica Sinica, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [18] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Xu Zhi-Jun, Cheng Cheng, Yang Huan-Song, Wu Qiang, Xiong Hong-Wei. The groud-state wave function and evolution of the interference pattern for a Bose-condensed gas in 3D optical lattices. Acta Physica Sinica, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
Metrics
  • Abstract views:  7401
  • PDF Downloads:  219
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2014
  • Accepted Date:  01 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map