Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss

Zhang Yuan Jiang Wen-Fan Chen Ming-Yang

Citation:

Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss

Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang
PDF
HTML
Get Citation
  • Aiming at solving the problems of coupling between modes in a core and mode coupling between cores in few-mode multi-core fiber, a fiber with seven cores each with step index is proposed, and each core can support five modes. Each core has a central low refractive index region and a high refractive index ring to ensure that there is a large refractive index difference between modes in the core, so as to reduce the problem of mode coupling. The bending loss of central core and outer core, the crosstalk characteristics between modes and the influence of core parameters on crosstalk performance are simulated and analyzed by the finite element method. The simulation results show that at a wavelength of 1.55 μm and a bending radius of 50 mm, the bending loss of the proposed multi-core fiber is much lower than its attenuation loss, and the crosstalk between the adjacent cores of the five core modes are less than –20 dB/100 km. Therefore, this multi-core fiber can realize independent transmission of the core modes with long-distance under small bending radius.
      Corresponding author: Chen Ming-Yang, miniyoung@163.com
    [1]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [2]

    Qian D, Huang M F, Huang Y K, Shao Y, Hu J, Wang T 2012 J. Lightwave Technol. 30 1540Google Scholar

    [3]

    Chen H G, Morency S, Jin C, Gregoire N, Essiambre 2016 Nat. Photonics 10 529Google Scholar

    [4]

    Mukasa K, Imamura K, Sugizaki R 2012 European Conference & Exhibition on Optical Communications Amsterdam, Netherlands, June 9, 2012 p1

    [5]

    Igarashi K, Souma D, Wakayama Y, Takeshima K, Suzuki M 2015 Optical Fiber Communications Conference and Exhibition (OFC) Angeles, California, USA, March 22–26, 2015 pTH5C.4

    [6]

    Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H, Sano A 2016 J. Lightwave Technol. 34 196Google Scholar

    [7]

    Igarashi K, Soma D, Wakayama Y, Takeshima K, Kawaguchi Y, Yoshikane N, Tsuritani T, Morita I, Suzuki M 2016 Opt. Express 24 10213Google Scholar

    [8]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [9]

    Xie Y, Pei L, Zheng J, Zhao Q, Ning T, Sun J 2019 Appl. Opt. 58 4373Google Scholar

    [10]

    刘诗男, 宁提纲, 马绍朔 2018 中国激光 45 1206001Google Scholar

    Liu S N, Ning T G, Ma S S 2018 Chin. J. Lasers 45 1206001Google Scholar

    [11]

    Chen S, Tong Y, Tian H 2020 Appl. Opt. 59 4634Google Scholar

    [12]

    Chen X, Li M J, Koh J, Artuso A, Nolan D A 2007 Opt. Express 15 10629Google Scholar

    [13]

    郑斯文, 林桢, 任国斌, 简水生 2013 62 044224Google Scholar

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224Google Scholar

    [14]

    Fini J M, Nicholson J W 2013 Opt. Express 21 19173Google Scholar

    [15]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770Google Scholar

    [16]

    Zheng X, Ren G, Huang L, Li H, Zhu B, Zheng H, Cao M 2016 Appl. Opt. 55 2639Google Scholar

    [17]

    Dablu K, Rakesh R 2020 Optoelectron. Lett. 16 126Google Scholar

    [18]

    Farooque U, Singh D K, Ranjan R 2019 Opt. Quantum Electron. 51 371Google Scholar

    [19]

    Zheng S, Ren G, Lin Z, Jian S 2013 Appl. Opt. 52 4541Google Scholar

    [20]

    Ye F, Tu J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [21]

    Jaramillo-Avila B, Torres J M, Leon-Montiel R J, Rodriguez-Lara B M 2019 Sci. Rep. 9 15737Google Scholar

    [22]

    Xie Y, Pei L, Zheng J 2020 Opt. Commun. 474 126155Google Scholar

    [23]

    Koshiba M, Saitoh K, Takenaga K 2012 IEEE Photonics J. 4 1987Google Scholar

    [24]

    Ce N X, Amezcua-Correa R, Bai N, Antonio-Lopez, E, Li G 2012 IEEE PTL 24 1914Google Scholar

    [25]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Kobayashi T 2016 J. Lightwave Technol. 34 93Google Scholar

    [26]

    Yusuke S A, Katsuhiro T, Shoichiro M, Kazuhiko A 2017 Opt. Fiber Technol. 35 19Google Scholar

    [27]

    Xie Y, Pei L, Sun J, Zheng J, Li J J 2019 Opt. Fiber Technol. 53 102001Google Scholar

    [28]

    Xie Y, Pei L, Zheng J, Zhao Q, Li J J 2020 Opt. Express 28 23806Google Scholar

  • 图 1  环芯少模多芯光纤结构示意图 (a)单独纤芯示意图; (b)剖面图

    Figure 1.  Structure diagram of ring core few-mode multi-core fiber: (a) Single fiber core; (b) whole configuration.

    图 2  环形芯少模多芯光纤折射率分布图

    Figure 2.  Refractive index distribution of ring core few-mode multi-core fiber.

    图 3  各模式的有效折射率与纤芯内半径Rring_in的关系

    Figure 3.  Relationship between the effective refractive index of each mode changes with the inner radius Rring_in.

    图 4  弯曲半径为50 mm时, 外纤芯5种模式的电场能量分布 (a) LP01模式; (b) LP11模式; (c) LP21模式; (d) LP02模式; (e) LP31模式

    Figure 4.  Electric field energy distribution of the outer fiber core in five modes at the bending radius of 50 mm: (a) LP01 mode; (b) LP11 mode; (c) LP21 mode; (d) LP02 mode; (e) LP31 mode.

    图 5  λ = 1550 nm时, 弯曲半径Rb与弯曲损耗的关系曲线 (a) 中心纤芯; (b)外纤芯

    Figure 5.  Bending loss curves as a function of bending radius Rb at the wavelength of 1550 nm: (a) Central core; (b) outer core.

    图 6  模式有效折射率随弯曲半径Rb的变化曲线(其中λ = 1550 nm, Λ = 45 μm) (a)中心纤芯模式; (b)外纤芯模式

    Figure 6.  Effective refractive indexes of the modes as a function of bending radius Rb for the fiber with λ = 1550 nm and Λ = 45 μm: (a) Central core; (b) outer core.

    图 7  多芯光纤在50 mm弯曲半径下外纤芯的模场分布图 (a) LP01模; (b) LP11模; (c) LP21模; (d) LP02模; (e) LP31

    Figure 7.  Mode field distribution of the outer core of the multi-core fiber at the bending radius of 50 mm: (a) LP01 mode; (b) LP11 mode; (c) LP21 mode; (d) LP02 mode; (e) LP31 mode.

    图 8  λ = 1550 nm, $ \varLambda =45 $ μm时, 弯曲半径Rb与串扰的关系曲线 (a)中间纤芯中的LP01模式和外纤芯各模式的串扰; (b)中间纤芯中的LP11模式和外纤芯各模式的串扰; (c)中间纤芯中的LP21模式和外纤芯各模式的串扰; (d)中间纤芯中的LP02模式和外纤芯各模式的串扰; (e)中间纤芯中的LP31模和外纤芯的各模式的串扰

    Figure 8.  Crosstalk curves for the multi-core optical fiber with λ = 1550 nm and Λ = 45 μm: (a) LP01 mode in the central core and the modes in the outer core; (b) LP11 mode in the central core and the modes in the outer core; (c) LP21 mode in the central core and the modes in the outer core; (d) LP02 mode in the central core and the modes in the outer core; (e) LP31 mode in the central core and the modes in the outer core.

    图 9  芯间距$ \varLambda $与串扰的关系曲线 (a)中间纤芯LP01模式与外纤芯 LP11模式; (b) 中间纤芯LP11模式与外纤芯 LP11模式; (c) 中间纤芯LP21模式与外纤芯 LP11模式; (d) 中间纤芯LP02模式与外纤芯 LP02模式; (e) 中间纤芯LP31模式与外纤芯 LP31模式

    Figure 9.  Relation curves between core spacing Λ and crosstalk: (a) LP01 mode of the central core and LP11 mode of the outer core; (b) LP11 mode of the central core and LP11 mode of the outer core; (c) LP21 mode of the central core and LP11 mode of the outer core; (d) LP02 mode of the central core and LP02 mode of the outer core; (e) LP31 mode of the central core and LP31 mode of the outer core.

    图 10  纤芯-包层折射率差与芯间串扰的关系 (a)中间纤芯中的LP01模和外纤芯各模式的串扰; (b)中间纤芯中的LP11模和外纤芯各模式的串扰; (c)中间纤芯中的LP21模和外纤芯各模式的串扰曲线; (d)中间纤芯中的LP02模和外纤芯各模式的串扰曲线; (e)中间纤芯中的LP31模和外纤芯的各模式之间的串扰

    Figure 10.  Relationship between core-cladding refractive index difference and inter-core crosstalk: (a) LP01 mode in the central core and modes in the outer core; (b) LP11 mode in the central core and modes in the outer core; (c) LP21 mode in the central core and modes in the outer core; (d) LP02 mode in the central core and modes in the outer core; (e) LP31 mode in the central core and modes in the outer core.

    表 1  中间纤芯与外纤芯各模式之间的串扰

    Table 1.  Crosstalk between different modes of middle core and outer core.

    XT/[dB·(100 km)–1]
    Core 2LP11b
    LP11b
    LP21b
    LP21b
    LP31b
    LP31b
    Core 1LP11b
    –92.84–129.70–125.62–95.26–118.93–116.99
    LP11b
    –124.63–92.86–99.26–135.26–123.78–120.89
    LP21b
    –79.30–82.52–63.70–72.51–90.05–93.15
    LP21b
    –60.43–69.32–71.89–63.78–89.96–89.17
    LP31b
    –33.35–44.74–46.39–35.01–28.76–46.20
    LP31b
    –41.08–33.92–34.12–50.58–49.63–28.19
    DownLoad: CSV

    表 2  光纤性能对比

    Table 2.  Fiber performance comparison.

    YearNumber of fiber coresStructure of fiber coreCladding diameter/μmBending radius/mmBending lossCrosstalk/dB
    (Transmission
    distance)
    2012[24]7Hole-assisted2251400.242 dB/km–60 (1 km)
    2015[25]36Trench-assisted2001400.001 dB/km–31 (5.5 km)
    2017[26]12Trench-assisted2302100.05 dB/100 turns–48 (500 km)
    2019[27]8Differential inner-cladding160300.0049 dB/100 turns< –50 (100 km)
    2020[28]7Hole-assisted125802.20 × 10–6 dB/m–32 (100 km)
    Our design7Ring-core structure180502.77 × 10–8 dB/m–116 (100 km)
    DownLoad: CSV
    Baidu
  • [1]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics 7 354Google Scholar

    [2]

    Qian D, Huang M F, Huang Y K, Shao Y, Hu J, Wang T 2012 J. Lightwave Technol. 30 1540Google Scholar

    [3]

    Chen H G, Morency S, Jin C, Gregoire N, Essiambre 2016 Nat. Photonics 10 529Google Scholar

    [4]

    Mukasa K, Imamura K, Sugizaki R 2012 European Conference & Exhibition on Optical Communications Amsterdam, Netherlands, June 9, 2012 p1

    [5]

    Igarashi K, Souma D, Wakayama Y, Takeshima K, Suzuki M 2015 Optical Fiber Communications Conference and Exhibition (OFC) Angeles, California, USA, March 22–26, 2015 pTH5C.4

    [6]

    Shibahara K, Lee D, Kobayashi T, Mizuno T, Takara H, Sano A 2016 J. Lightwave Technol. 34 196Google Scholar

    [7]

    Igarashi K, Soma D, Wakayama Y, Takeshima K, Kawaguchi Y, Yoshikane N, Tsuritani T, Morita I, Suzuki M 2016 Opt. Express 24 10213Google Scholar

    [8]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [9]

    Xie Y, Pei L, Zheng J, Zhao Q, Ning T, Sun J 2019 Appl. Opt. 58 4373Google Scholar

    [10]

    刘诗男, 宁提纲, 马绍朔 2018 中国激光 45 1206001Google Scholar

    Liu S N, Ning T G, Ma S S 2018 Chin. J. Lasers 45 1206001Google Scholar

    [11]

    Chen S, Tong Y, Tian H 2020 Appl. Opt. 59 4634Google Scholar

    [12]

    Chen X, Li M J, Koh J, Artuso A, Nolan D A 2007 Opt. Express 15 10629Google Scholar

    [13]

    郑斯文, 林桢, 任国斌, 简水生 2013 62 044224Google Scholar

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224Google Scholar

    [14]

    Fini J M, Nicholson J W 2013 Opt. Express 21 19173Google Scholar

    [15]

    Tsuchida Y, Saitoh K, Koshiba M 2005 Opt. Express 13 4770Google Scholar

    [16]

    Zheng X, Ren G, Huang L, Li H, Zhu B, Zheng H, Cao M 2016 Appl. Opt. 55 2639Google Scholar

    [17]

    Dablu K, Rakesh R 2020 Optoelectron. Lett. 16 126Google Scholar

    [18]

    Farooque U, Singh D K, Ranjan R 2019 Opt. Quantum Electron. 51 371Google Scholar

    [19]

    Zheng S, Ren G, Lin Z, Jian S 2013 Appl. Opt. 52 4541Google Scholar

    [20]

    Ye F, Tu J, Saitoh K, Morioka T 2014 Opt. Express 22 23007Google Scholar

    [21]

    Jaramillo-Avila B, Torres J M, Leon-Montiel R J, Rodriguez-Lara B M 2019 Sci. Rep. 9 15737Google Scholar

    [22]

    Xie Y, Pei L, Zheng J 2020 Opt. Commun. 474 126155Google Scholar

    [23]

    Koshiba M, Saitoh K, Takenaga K 2012 IEEE Photonics J. 4 1987Google Scholar

    [24]

    Ce N X, Amezcua-Correa R, Bai N, Antonio-Lopez, E, Li G 2012 IEEE PTL 24 1914Google Scholar

    [25]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Kobayashi T 2016 J. Lightwave Technol. 34 93Google Scholar

    [26]

    Yusuke S A, Katsuhiro T, Shoichiro M, Kazuhiko A 2017 Opt. Fiber Technol. 35 19Google Scholar

    [27]

    Xie Y, Pei L, Sun J, Zheng J, Li J J 2019 Opt. Fiber Technol. 53 102001Google Scholar

    [28]

    Xie Y, Pei L, Zheng J, Zhao Q, Li J J 2020 Opt. Express 28 23806Google Scholar

  • [1] Hui Zhan-Qiang, Liu Rui-Hua, Gao Li-Ming, Han Dong-Dong, Li Tian-Tian, Gong Jia-Min. Low-loss weak-coupling 6-mode hollow-core negative curvature fiber based on symmetric double-ring nested tube. Acta Physica Sinica, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] Ma Li-Ling, Li Shu-Guang, Li Jian-She, Meng Xiao-Jian, Li Zeng-Hui, Wang Lu-Yao, Shao Peng-Shuai. A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance. Acta Physica Sinica, 2022, 71(10): 104206. doi: 10.7498/aps.71.20212221
    [3] Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang. A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation. Acta Physica Sinica, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [4] Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei. Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity. Acta Physica Sinica, 2021, 70(10): 104208. doi: 10.7498/aps.70.20201825
    [5] A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210974
    [6] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [7] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [8] Xiao Shi-Yan, Jia Da-Gong, Nie An-Ran, Yu Hui, Ji Zhe, Zhang Hong-Xia, Liu Tie-Gen. Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole. Acta Physica Sinica, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [9] Jin Wen-Xing, Ren Guo-Bin, Pei Li, Jiang You-Chao, Wu Yue, Shen Ya, Yang Yu-Guang, Ren Wen-Hua, Jian Shui-Sheng. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores. Acta Physica Sinica, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [10] Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling. Study on bending losses of few-mode optical fibers. Acta Physica Sinica, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [12] Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [13] Li Li-Jun, Lai Yong-Zheng, Cao Mao-Yong, Liu Chao, Yuan Xue-Mei, Zhang Xu, Guan Jin-Peng, Shi Jing, Li Jing. Calculation and simulation of optical fiber core and cladding mode effective refractive index. Acta Physica Sinica, 2013, 62(14): 140201. doi: 10.7498/aps.62.140201
    [14] Zhang Yin, Chen Ming-Yang, Zhou Jun, Zhang Yong-Kang. Investigation on large-mode-area flat-topped optical fiber with microstructured core and its transmission characteristics. Acta Physica Sinica, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [15] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [16] Zheng Si-Wen, Lin Zhen, Ren Guo-Bin, Jian Shui-Sheng. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber. Acta Physica Sinica, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [17] Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers. Acta Physica Sinica, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [18] Cheng Sheng-Fei, Peng Jing-Gang, Li Jin-Yan, Cheng Lan, Jiang Zuo-Wen, Li Hai-Qing, Dai Neng-Li, Jiang Fa-Gang, Yang Xiao-Bo. The surface modes loss control of hollow-core photonic crystal fibers. Acta Physica Sinica, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [19] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [20] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
Metrics
  • Abstract views:  5514
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2021
  • Accepted Date:  27 January 2022
  • Available Online:  02 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回
Baidu
map