-
Orthogonally-polarized dual-wavelength laser has significant practical applications in various fields, such as precision metrology, terahertz radiation generation, differential radar, spectral analysis. The Nd:YLF crystal has two orthogonally-polarized emission peaks with comparable emission cross sections, high-energy storage capability and relatively weak thermal lens effect. Owing to these properties, it has been recognized as a suitable gain medium for generating orthogonally-polarized dual-wavelength laser. In this paper, the Nd:YLF crystal with low doping concentration is employed as a laser gain medium to produce 1047 nm and 1053 nm dual-wavelength fundamental lasers with orthogonal polarizations, and the risk of thermal cracking of Nd:YLF crystal is reduced by appropriately increasing the pump spots. Using the intracavity Raman frequency shift in BaWO4 crystal, orthogonally-polarized dual-wavelength Raman lasers at 1159.9 nm and 1167.1 nm are achieved to have high peak power. Under the total incident pump power of 40 W and a pulse repetition rate of 5 kHz, the maximum dual-wavelength Raman output power is obtained to be 2.67 W. The corresponding total optical conversion efficiency is 6.7%. For 1159.9 nm and 1167.1 nm Raman laser, their maximum average output power values are 1.31 W and 1.36 W, respectively. Their narrowest pulse widths are 1.50 ns and 1.53 ns, and the corresponding peak power values are as high as 174.7 kW and 177.8 kW, respectively. The results show that the problem of thermal cracking of Nd:YLF crystal at high pump power can be solved by reducing the doping concentration and increasing the pump spot. The Nd:YLF/BaWO4 is a promising crystal combination for realizing orthogonally-polarized dual-wavelength Raman laser.
-
Keywords:
- dual-wavelength Raman laser /
- orthogonal polarization /
- actively Q-switched /
- Nd:YLF crystal
[1] Wu B, Jiang P P, Yang D Z, Chen T, Kong J, Shen Y H 2009 Opt. Express 17 6004Google Scholar
[2] Zhao P, Ragam S, Ding Y J, Zotova I B 2010 Opt. Lett. 35 3979Google Scholar
[3] Zhao P, Ragam S, Ding Y J, Zotova I B 2011 Opt. Lett. 36 4818Google Scholar
[4] Zuo Z Y, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2018 Opt. Lett. 43 4578Google Scholar
[5] Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar
[6] Huang Y P, Cho C Y, Huang Y J, Chen Y F 2012 Opt. Express 20 5644Google Scholar
[7] Lv Y F, Xia J, Fu X H, Zhang A F, Liu H L, Zhang J 2014 J. Opt. Soc. Am. B 31 898Google Scholar
[8] Lv Y F, Xia J, Zhang J, Fu X H, Liu H L 2014 Appl. Opt. 53 5141Google Scholar
[9] Sun G C, Lee Y D, Zao Y D, Xu L J, Wang J B, Chen G B, Lu J 2013 Laser Phys. 23 045001Google Scholar
[10] Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844Google Scholar
[11] Lv Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar
[12] Xu B, Wang Y, Lin Z, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar
[13] Li H Q, Zhang R, Tang Y L, Wang S W, Xu J Q, Zhang P X, Zhao C C, Hang Y, Zhang S Y 2013 Opt. Lett. 38 4425Google Scholar
[14] Chen H B, Huang Y S, Li B X, Liao W B, Zhang G, Lin Z B 2015 Opt. Lett. 40 4659Google Scholar
[15] Brenier A 2011 Laser Phys. Lett. 8 520Google Scholar
[16] Xu J L, Ji Y X, Wang Y Q, You Z Y, Wang H Y, Tu C Y 2014 Opt. Express 22 6577Google Scholar
[17] You Z Y, Zhu Z J, Sun Y J, Huang Y S, Lee C K, Wang Y, Li J F, Tu C Y, Lin Z B 2017 Opt. Mater. Express 7 2760Google Scholar
[18] Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar
[19] Murray J T, Austin W L, Powell R C 1999 Opt. Mater. 11 353Google Scholar
[20] Huang H T, Shen D Y, He J L 2012 Opt. Express 20 27838Google Scholar
[21] Liu Y, Liu Z J, Cong Z H, Li Y F, Xia J B, Lu Q M, Zhang S S, Men S J 2014 Opt. Express 22 21879Google Scholar
[22] Sun Y J, Lee C K, Zhu Z J, Wang Y Q, Xia H P, Wang X H, Xu J L, You Z Y, Tu C Y 2016 Opt. Mater. Express 6 3550Google Scholar
[23] Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 120 689Google Scholar
[24] Ryan J R, Beach R 1992 J. Opt. Soc. Am. B 9 1883Google Scholar
[25] Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687Google Scholar
[26] Sheng Q, Lee A, Spence D, Pask H 2018 Opt. Express 26 32145Google Scholar
[27] Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar
[28] Peng X Y, Xu L, Asundi A 2005 Appl. Opt. 44 800Google Scholar
[29] Hsiao J Q, Huang Y J, Lee C C, Yu Y T, Tsou C H, Liang H C, Chen Y F 2021 Opt. Lett. 46 2063Google Scholar
[30] Pollnau M, Hardman P J, Kern M A, Clarkson W A, Hanna D C 1998 Phys. Rev. B 58 16076Google Scholar
-
表 1 Nd:YLF/BaWO4正交偏振双波长拉曼激光输出性能对比
Table 1. Comparison of performances of orthogonally polarized Nd:YLF/BaWO4 Raman lasers.
增益介质 输出拉曼
波长/nm注入功率/W 重复频率/kHz 输出功率 拉曼转换
效率脉宽/ns 峰值功率
/kW文献 Nd:YLF
BaWO41159.9
1167.120
205 1.31 W
1.36 W6.6%
6.8%1.50
1.53174.7
177.8This work Nd:YLF
BaWO41159.4
1166.85.73
4.856 423 mW
332 mW7.4%
6.8%12
9.35.88
5.95[21] -
[1] Wu B, Jiang P P, Yang D Z, Chen T, Kong J, Shen Y H 2009 Opt. Express 17 6004Google Scholar
[2] Zhao P, Ragam S, Ding Y J, Zotova I B 2010 Opt. Lett. 35 3979Google Scholar
[3] Zhao P, Ragam S, Ding Y J, Zotova I B 2011 Opt. Lett. 36 4818Google Scholar
[4] Zuo Z Y, Dai S B, Zhu S Q, Yin H, Li Z, Chen Z Q 2018 Opt. Lett. 43 4578Google Scholar
[5] Tu Z H, Dai S B, Zhu S Q, Yin H, Li Z, Ji E C, Chen Z Q 2019 Opt. Express 27 32949Google Scholar
[6] Huang Y P, Cho C Y, Huang Y J, Chen Y F 2012 Opt. Express 20 5644Google Scholar
[7] Lv Y F, Xia J, Fu X H, Zhang A F, Liu H L, Zhang J 2014 J. Opt. Soc. Am. B 31 898Google Scholar
[8] Lv Y F, Xia J, Zhang J, Fu X H, Liu H L 2014 Appl. Opt. 53 5141Google Scholar
[9] Sun G C, Lee Y D, Zao Y D, Xu L J, Wang J B, Chen G B, Lu J 2013 Laser Phys. 23 045001Google Scholar
[10] Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844Google Scholar
[11] Lv Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar
[12] Xu B, Wang Y, Lin Z, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar
[13] Li H Q, Zhang R, Tang Y L, Wang S W, Xu J Q, Zhang P X, Zhao C C, Hang Y, Zhang S Y 2013 Opt. Lett. 38 4425Google Scholar
[14] Chen H B, Huang Y S, Li B X, Liao W B, Zhang G, Lin Z B 2015 Opt. Lett. 40 4659Google Scholar
[15] Brenier A 2011 Laser Phys. Lett. 8 520Google Scholar
[16] Xu J L, Ji Y X, Wang Y Q, You Z Y, Wang H Y, Tu C Y 2014 Opt. Express 22 6577Google Scholar
[17] You Z Y, Zhu Z J, Sun Y J, Huang Y S, Lee C K, Wang Y, Li J F, Tu C Y, Lin Z B 2017 Opt. Mater. Express 7 2760Google Scholar
[18] Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar
[19] Murray J T, Austin W L, Powell R C 1999 Opt. Mater. 11 353Google Scholar
[20] Huang H T, Shen D Y, He J L 2012 Opt. Express 20 27838Google Scholar
[21] Liu Y, Liu Z J, Cong Z H, Li Y F, Xia J B, Lu Q M, Zhang S S, Men S J 2014 Opt. Express 22 21879Google Scholar
[22] Sun Y J, Lee C K, Zhu Z J, Wang Y Q, Xia H P, Wang X H, Xu J L, You Z Y, Tu C Y 2016 Opt. Mater. Express 6 3550Google Scholar
[23] Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 120 689Google Scholar
[24] Ryan J R, Beach R 1992 J. Opt. Soc. Am. B 9 1883Google Scholar
[25] Fan L, Fan Y X, Li Y Q, Zhang H J, Wang Q, Wang J, Wang H T 2009 Opt. Lett. 34 1687Google Scholar
[26] Sheng Q, Lee A, Spence D, Pask H 2018 Opt. Express 26 32145Google Scholar
[27] Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar
[28] Peng X Y, Xu L, Asundi A 2005 Appl. Opt. 44 800Google Scholar
[29] Hsiao J Q, Huang Y J, Lee C C, Yu Y T, Tsou C H, Liang H C, Chen Y F 2021 Opt. Lett. 46 2063Google Scholar
[30] Pollnau M, Hardman P J, Kern M A, Clarkson W A, Hanna D C 1998 Phys. Rev. B 58 16076Google Scholar
Catalog
Metrics
- Abstract views: 4835
- PDF Downloads: 84
- Cited By: 0