Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling

Luo Yi-Ming Wang Zhan-Hui Chen Jia-Le Wu Xue-Ke Fu Cai-Long He Xiao-Xue Liu Liang Yang Zeng-Chen Li Yong-Gao Gao Jin-Ming Du Hua-Rong Kulun Integrated Simulation and Design Group

Citation:

Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling

Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group
PDF
HTML
Get Citation
  • The physical process of tokamak plasma spans a large space-time scale, and the main physical processes differ widely in different spatial regions (such as core, pedestal, scraping-off layer, divertor region), so it is necessary to adopt the integrated modeling method to analyze the physical problems on a global multi-space-time scale. In order to study in depth the transport and confinement during the steady-state or ramp-up of the tokamak discharging experiment, it is necessary to use a variety of physical programs to carry out integrated simulation research and physical analysis. Based on the OMFIT platform, in this paper the integrated simulation verification and analysis of the shot #37012 are conducted, which is a high-$\beta $ discharge experiment on HL-2A device and verifies the reliability and applicability of those programs. In this process, the experimental parameters are checked and supplemented by selecting appropriate models. The simulation results after evolution are consistent with the experimental results. On this basis, we use the TGLF model to analyze the linear electrostatic drift wave instability in the core region. The reason for the improvement of the H-mode confinement by NBI off-axis heating is that the ETG instability in the NBI power deposition region is suppressed. The transport is dominated by ITG instability in the internal transport barrier (ITB), and the transport is reduced to the level of neoclassical transport.
      Corresponding author: Wang Zhan-Hui, zhwang@swip.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2018YFE0303102, 2017YFE0302100), the Sichuan Science and Technology Project(2022JDRC0014), the National Natural Science Foundation of China (Grant Nos. 11805158, 11875234, 12047576, 11805055), the Key Program of the National Natural Science Foundation of China (Grant No. U1867222), the Sichuan Youth Science and Technology Innovation Team Project, China (Grant No. 2020JDTD0030), and the Outstanding Project Funding for Young Researcher in ASIPP, China (Grant No. DSJJ-2020-03)
    [1]

    Ida K, Fujita T 2018 Plasma Phys. Controlled Fusion 60 033001Google Scholar

    [2]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nucl. Fusion 55 083008Google Scholar

    [3]

    Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Turco F 2010 Nucl. Fusion 50 043001Google Scholar

    [4]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [5]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [6]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E A 2009 Phys. Plasma 16 060704Google Scholar

    [7]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2013 Phys. Plasmas 20 082503Google Scholar

    [8]

    Pfeiffer W W, Davidson R H, Miller R L, Waltz R E 1980 GA-A16178 http://fusion.gat.com/THEORY/onetwo

    [9]

    Lao L L, St John H, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [10]

    Staebler G M, Kinsey J E, Waltz R E 2005 Phys. Plasmas 12 102508Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nuclear Fusion 55 083008

    [12]

    McClenaghan J, Garofalo A M, Lao L L, Weisberg D B, Meneghini O, Smith S P, Holcomb C T 2020 Nucl. Fusion 60 046025Google Scholar

    [13]

    Wu M Q, Li G Q, Chen J L, Du H F, Gao X, Ren Q L 2018 Nucl. Fusion 58 046001Google Scholar

    [14]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T 2017 Nucl. Fusion 57 056021Google Scholar

    [15]

    Wu M Q, Pan C K, Chan V S, Li G Q, Garofalo A M, Jian X, Liu L, Ren Q L, Chen J L, Gao X, Gong X Z, Ding S Y, Qian J P 2018 Phys. Plasmas 25 042506Google Scholar

    [16]

    Meneghini O, G Snoep, B C Lyons, J McClenaghan, C S Imai, B Grierson, S P Smith, G M Staebler, P B Snyder, J Candy, E Belli, L Lao, J M Park, J Citrin, T L Cordemiglia, A Tema, S Mordijck 2021 Nucl. Fusion 61 026006Google Scholar

    [17]

    Chen J L, Jian X, Chan V S, Li Z, Deng Z, Li G 2017 Plasma Phys. Controlled Fusion 59 075005Google Scholar

    [18]

    Chen J L, Chan V S, Jian X, Zhang X J, Ren Q L, Li G Q, Zhou C X, CFETR Phys Team 2021 Nucl. Fusion 61 046002Google Scholar

    [19]

    Jian X, Chen J L, Chan V S, Zhuang G, Li G Q, Deng Z, Shi N, Xu G L, Staebler G M, Guo W F 2017 Nucl. Fusion 57 046012Google Scholar

    [20]

    Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T 2015 Nucl. Fusion 55 073002Google Scholar

    [21]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nuclear Fusion 25 1611

    [22]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603

    [23]

    Goldston R J, McCune D C, Towner H H, Davis S L, Hawryluk R J, Schmidt G L 1981 J. Comput. Phys. 43 61Google Scholar

    [24]

    Jenkins T G, Held E D 2015 J. Comput. Phys. 297 427Google Scholar

    [25]

    Lin-Liu Y R, Chan V S, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [26]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [27]

    Staebler G M, Kinsey J E, Waltz R E 2007 Phys. Plasmas 14 055909Google Scholar

    [28]

    Howard N T, Holland C, White A E, Greenwald M, Candy J 2016 Nucl. Fusion 56 014004Google Scholar

    [29]

    McClenaghan J, Garofalo A M, Meneghini O, Smith S P, Leuer J A, Staebler G M, Lao L L, Park J M, Ding S Y, Gong X, Qian J 2017 Nucl. Fusion 57 116019Google Scholar

    [30]

    Belli E A, Candy J 2008 Plasma Phys. Controlled Fusion 50 095010Google Scholar

    [31]

    Belli E A, Candy J 2009 Plasma Phys. Controlled Fusion 51 075018Google Scholar

    [32]

    Belli E A, Candy J 2012 Plasma Phys. Controlled Fusion 54 015015Google Scholar

  • 图 1  OMFIT芯部等离子体剖面集成模拟流程图

    Figure 1.  The integrated simulation workflow of core plasma with OMFIT.

    图 2  第37012炮放电参数 (a) 等离子体电流${I_{\text{p}}}$; (b) 等离子体储能$ {W}_{\mathrm{E}} $; (c) 归一化比压${\beta _{\text{N}}}$和极向比压${\beta _{\text{p}}}$; (d) 线平均电子密度$\overline {{n_{\text{e}}}} $; (e) NBI加热功率; (f) ${D_\alpha }$

    Figure 2.  The dischargement parameters of the shot #37012: (a) Plasma current ${I_{\text{p}}}$; (b) stored energy $ {W}_{\mathrm{E}} $; (c) normalized beta ${\beta _{\text{N}}}$ and poloidal beta ${\beta _{\text{p}}}$; (d)line-averaged electron density $ {\stackrel{-}{n}}_{\mathrm{e}} $; (e) NBI heating power ${P_{{\text{NBI}}}}$; (f) ${D_\alpha }$.

    图 3  第37012炮在1020 ms时的(a)离子温度和(b)旋转速度剖面

    Figure 3.  The ion temperature profile (a) and rotation profile (b) of the shot #37012 at the 1020 ms.

    图 4  第37012炮在1020 ms时的电子密度剖面处理

    Figure 4.  The treatment of electron density profile of the shot #37012 at the 1020 ms.

    图 5  第37012炮在1020 ms时得到的电子温度剖面

    Figure 5.  The profile of electron temperature of the shot #37012 at the 1020 ms.

    图 6  集成模拟计算中各物理量的多次迭代收敛性 (a1), (b1), (c1) 迭代前后对比; (a2), (b2), (c2) TGYRO计算点的收敛过程

    Figure 6.  The astringency of each physical quantity in the integrated simulation: (a1), (b1), (c1) The comparison between before and after the iteration; (a2), (b2), (c2) the convergence process of the TGYRO calculating points.

    图 7  第37012炮在1020 ms时刻的各成分电流剖面

    Figure 7.  The current profiles of each composition of the shot #37012 at the 1020 ms.

    图 8  第37012炮在1020 ms时刻剖面的模拟结果与实验结果对照 (a) 压强剖面; (b) 电子密度剖面; (c) 离子温度剖面; (d) 安全因子$q$剖面

    Figure 8.  The experiment and simulation profiles comparation of the shot #37012 at the 1020 ms: (a) Pressure; (b) electron density; (c) ion temperature; (d) safety factor $q$.

    图 9  NBI能量密度沉积分布

    Figure 9.  The distribution of NBI deposed energy density.

    图 10  第37012炮放电在1020 ms时刻模拟后得到 (a) 离子能量通量; (b) 电子能量通量

    Figure 10.  The ion energy flux (a) and electron energy flux (b) of the shot #37012 at the 1020 ms.

    图 11  0.2—0.8区域内两支最不稳定的本征模式的频谱

    Figure 11.  The spectrum of two most unstable eigenmode in the 0.2–0.8 region.

    图 12  $ \rho =0.3, 0.5, 0.8 $处线性不稳定性的增长率与波数的关系(蓝色为电子抗磁漂移方向, 红色为离子抗磁漂移方向)

    Figure 12.  The relationship between the growth-rate and wavenumber of the linear instabilities in the $ \rho =0.3, 0.5, 0.8 $ (the blue points represent the electron diamagnetic drift direction and the red points represent the ion diamagnetic drift direction).

    表 1  第37012炮在1020 ms时的参数

    Table 1.  The parameters of the shot #37012 at the 1020 ms

    物理量
    $ {I}_{\mathrm{p}}/\mathrm{k}\mathrm{A} $175
    $ {B}_{\mathrm{t}}/\text{T} $1.26
    $ {q}_{95} $4
    $ {P}_{\mathrm{N}\mathrm{B}\mathrm{I}}/\mathrm{k}\mathrm{W} $750+680
    $ {\beta }_{\mathrm{N}} $1.98
    ${\bar{n} }_{\mathrm{e} }/{10}^{19}~{\mathrm{m} }^{-3}$2.4
    $ {W}_{\mathrm{E}} $/kJ33.3
    芯部离子温度/keV2.07
    DownLoad: CSV
    Baidu
  • [1]

    Ida K, Fujita T 2018 Plasma Phys. Controlled Fusion 60 033001Google Scholar

    [2]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nucl. Fusion 55 083008Google Scholar

    [3]

    Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Turco F 2010 Nucl. Fusion 50 043001Google Scholar

    [4]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [5]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [6]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E A 2009 Phys. Plasma 16 060704Google Scholar

    [7]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2013 Phys. Plasmas 20 082503Google Scholar

    [8]

    Pfeiffer W W, Davidson R H, Miller R L, Waltz R E 1980 GA-A16178 http://fusion.gat.com/THEORY/onetwo

    [9]

    Lao L L, St John H, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [10]

    Staebler G M, Kinsey J E, Waltz R E 2005 Phys. Plasmas 12 102508Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nuclear Fusion 55 083008

    [12]

    McClenaghan J, Garofalo A M, Lao L L, Weisberg D B, Meneghini O, Smith S P, Holcomb C T 2020 Nucl. Fusion 60 046025Google Scholar

    [13]

    Wu M Q, Li G Q, Chen J L, Du H F, Gao X, Ren Q L 2018 Nucl. Fusion 58 046001Google Scholar

    [14]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T 2017 Nucl. Fusion 57 056021Google Scholar

    [15]

    Wu M Q, Pan C K, Chan V S, Li G Q, Garofalo A M, Jian X, Liu L, Ren Q L, Chen J L, Gao X, Gong X Z, Ding S Y, Qian J P 2018 Phys. Plasmas 25 042506Google Scholar

    [16]

    Meneghini O, G Snoep, B C Lyons, J McClenaghan, C S Imai, B Grierson, S P Smith, G M Staebler, P B Snyder, J Candy, E Belli, L Lao, J M Park, J Citrin, T L Cordemiglia, A Tema, S Mordijck 2021 Nucl. Fusion 61 026006Google Scholar

    [17]

    Chen J L, Jian X, Chan V S, Li Z, Deng Z, Li G 2017 Plasma Phys. Controlled Fusion 59 075005Google Scholar

    [18]

    Chen J L, Chan V S, Jian X, Zhang X J, Ren Q L, Li G Q, Zhou C X, CFETR Phys Team 2021 Nucl. Fusion 61 046002Google Scholar

    [19]

    Jian X, Chen J L, Chan V S, Zhuang G, Li G Q, Deng Z, Shi N, Xu G L, Staebler G M, Guo W F 2017 Nucl. Fusion 57 046012Google Scholar

    [20]

    Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T 2015 Nucl. Fusion 55 073002Google Scholar

    [21]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nuclear Fusion 25 1611

    [22]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603

    [23]

    Goldston R J, McCune D C, Towner H H, Davis S L, Hawryluk R J, Schmidt G L 1981 J. Comput. Phys. 43 61Google Scholar

    [24]

    Jenkins T G, Held E D 2015 J. Comput. Phys. 297 427Google Scholar

    [25]

    Lin-Liu Y R, Chan V S, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [26]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [27]

    Staebler G M, Kinsey J E, Waltz R E 2007 Phys. Plasmas 14 055909Google Scholar

    [28]

    Howard N T, Holland C, White A E, Greenwald M, Candy J 2016 Nucl. Fusion 56 014004Google Scholar

    [29]

    McClenaghan J, Garofalo A M, Meneghini O, Smith S P, Leuer J A, Staebler G M, Lao L L, Park J M, Ding S Y, Gong X, Qian J 2017 Nucl. Fusion 57 116019Google Scholar

    [30]

    Belli E A, Candy J 2008 Plasma Phys. Controlled Fusion 50 095010Google Scholar

    [31]

    Belli E A, Candy J 2009 Plasma Phys. Controlled Fusion 51 075018Google Scholar

    [32]

    Belli E A, Candy J 2012 Plasma Phys. Controlled Fusion 54 015015Google Scholar

  • [1] Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian. Current status and prospects of burning plasma physics in magnetically confined fusion. Acta Physica Sinica, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] Li Zheng-Ji, Chen Wei, Sun Ai-Ping, Yu Li-Ming, Wang Zhuo, Chen Jia-Le, Xu Jian-Qiang, Li Ji-Quan, Shi Zhong-Bing, Jiang Min, Li Yong-Gao, He Xiao-Xue, Yang Zeng-Chen, Li Jian. Integrated analysis of high-βN double transport barriers scenario on HL-2A. Acta Physica Sinica, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [3] Bao Jian, Zhang Wen-Lu, Li Ding. Global simulations of energetic electron excitation of beta-induced Alfvén eigenmodes. Acta Physica Sinica, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [4] Shi Pei-Wan, Zhu Xiao-Long, Chen Wei, Yu Xin, Yang Zeng-Chen, He Xiao-Xue, Wang Zheng-Xiong. Effect of deposition location of electron cyclotron resonance heating on active control of fishbone modes in the HL-2A tokamak. Acta Physica Sinica, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [5] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [6] Hao Bao-Long, Li Ying-Ying, Chen Wei, Hao Guang-Zhou, Gu Xiang, Sun Tian-Tian, Wang Yu-Min, Dong Jia-Qi, Yuan Bao-Shan, Peng Yuan-Kai, Shi Yue-Jiang, Xie Hua-Sheng, Liu Min-Sheng, ENN TEAM. Optimizing numerical simulation of beam ion loss due to toroidal field ripple on EXL-50U spherical torus. Acta Physica Sinica, 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [7] Sun Zi-Yuan, Wang Yuan-Zhen, Liu Yue. Numerical study on predicting MHD stability of HL-2A tokamak pedestal structure. Acta Physica Sinica, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [8] Zhang Hong-Ming, Wu Jing, Li Jia-Xian, Yao Lie-Ming, Xu Jiang-Cheng, Wu Yan-Zhan, Liu Qi-Yan, Guo Peng-Cheng. Integrated simulation of plasma current profile in HL-2A high confinement mode(H mode). Acta Physica Sinica, 2021, 70(23): 235203. doi: 10.7498/aps.70.20210945
    [9] Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian. Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A. Acta Physica Sinica, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [10] Tang Xiong-Xin, Qiu Ji-Si, Fan Zhong-Wei, Wang Hao-Cheng, Liu Yue-Liang, Liu Hao, Su Liang-Bi. Experimental study of diode-pumped Nd, Y:CaF2 amplifier for inertial confinement fusion laser driver. Acta Physica Sinica, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [11] Feng Bei-Bin, Yao Liang-Hua, Chen Cheng-Yuan, Ji Xiao-Quan, Zhong Wu-Lü, Shi Zhong-Bing, Yu De-Liang, Cui Zheng-Ying, Song Xian-Ming, Duan Xu-Ru. Experimental study of L-H transition triggered by supersonic molecular beam injection in the HL-2A tokamak. Acta Physica Sinica, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [12] Zheng Ling, Zhao Qing, Zhou Yan. Simulation of protective effect of the buffer on the first mirror in HL-2A tokamak. Acta Physica Sinica, 2011, 60(8): 085204. doi: 10.7498/aps.60.085204
    [13] Zhong Wu-Lü, Duan Xu-Ru, Yu De-Liang, Han Xiao-Yu, Yang Li-Mei. Simulation of the neutral beam emission spectroscopy on the HL-2A tokamak. Acta Physica Sinica, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [14] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [15] Hong Wen-Yu, Yan Long-Wen, Zhao Kai-Jun, Lan Tao, Dong Jia-Qi, Yu Chang-Xuan, Cheng Jun, Qian Jun, Liu A-Di, Luo Cui-Wen, Xu Zheng-Yu, Huang Yuan, Yang Qing-Wei. Study of three dimensional zonal flows characteristic and novel probe design in HL-2A. Acta Physica Sinica, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [16] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [17] You Tian-Xue, Yuan Bao-Shan, Li Fang-Zhu. Plasma boundary identification in HL-2A by means of the movable current filaments method. Acta Physica Sinica, 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [18] Zheng Yin-Jia, Huang Yuan, Feng Zhen, Shi Le, Cui Cheng-He, Wang Ming-Xu, Xu Hong-Bing. Investigation of gas puff imaging on HL-2A tokamak. Acta Physica Sinica, 2007, 56(3): 1452-1460. doi: 10.7498/aps.56.1452
    [19] Yuan Bao-Shan, You Tian-Xue, Liu Li, Li Fang-Zhu, Yang Qing-Wei, Fen Bei-Bin. Real-time visualization system of plasma shape for HL-2A. Acta Physica Sinica, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
    [20] Yuan Bao-Shan, You Tian-Xue, Qin Yun-Wen, Feng Bei-Bin, Ji Xiao-Quan. Real-time determination of plasma confinement parameters in HL-2A. Acta Physica Sinica, 2006, 55(3): 1315-1319. doi: 10.7498/aps.55.1315
Metrics
  • Abstract views:  3754
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  19 October 2021
  • Accepted Date:  29 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回
Baidu
map