Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of Neoclassical Convection Effects on Tungsten Impurity Accumulation in Tokamak

LUO Yuchen SANG Chaofeng WANG Yilin WU Yihan ZHOU Qingrui LI Jiaxian XUE Miao XUE Lei ZHENG Guoyao DU Hailong WANG Dezhen

Citation:

Simulation of Neoclassical Convection Effects on Tungsten Impurity Accumulation in Tokamak

LUO Yuchen, SANG Chaofeng, WANG Yilin, WU Yihan, ZHOU Qingrui, LI Jiaxian, XUE Miao, XUE Lei, ZHENG Guoyao, DU Hailong, WANG Dezhen
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Controlling of tungsten (W) impurity core accumulation is of great significance for the steady-state operation of tokamaks. This work mainly investigates the effect of neoclassical transport on the core accumulation of W impurities using STRAHL code. The study focuses on the HL-3 device, which will use tungsten divertor and conduct research under argon gas injection discharge conditions. In the simulation, the edge and core background plasma parameters are obtained by SOLPS-ITER and OMFIT simulations, respectively. The distribution of tungsten impurities in the boundary region is simulated using the IMPEDGE code. The edge anomalous transport coefficient in STRAHL is adjusted accordingly, and the simulation results are compared with those from IMPEDGE to ensure consistency in impurity distribution between the core and edge. In the core region, a numerical scan is performed to adjust the simulation results so that the energy radiation matches the setting values, thereby determining the specific turbulence convection velocity. By setting the coefficients for both the core and boundary regions, a complete distribution of W impurities from boundary to the core is obtained. To account the neoclassical transport effects, the neoclassical transport coefficients are calculated using the subroutine NEOART and applied to the impurity transport simulation, and the simulation region is set from ρ= 0.0 to 0.9. On this basis, the transport of W impurities with and without neoclassical convection is simulated. The simulation results show that without neoclassical convection, anomalous transport dominates the impurity transport, which is directed inward and enhances impurity accumulation in the core, and the core impurity density reaches 1.1×1016 m-3. After introducing neoclassical convection whose direction is outward, it can offset the inward anomalous convection and significantly reduces the W impurity density in the core, significantly reducing the core tungsten impurity density to 4.0×1015 m-3. In additional, the neoclassical convection in the region of ρ = 0.72 - 0.90 plays a more important role in reducing the core impurity density. Further analysis of the components of neoclassical convection shows that the PS (Pfirsche-Schlüter) component dominates the neoclassical convection term, which is mainly driven by the ion temperature gradient term. Therefore, experimentally, plasma heating can be used to enhance the temperature gradient and suppress impurity core accumulation.
  • [1]

    Neu R, Dux R, Geier A, Kallenbach A, Pugno R, Rohde V, Bolshukhin D, Fuchs J C, Gehre O, Gruber O, Hobirk J, Kaufmann M, Krieger K, Laux M, Maggi C, Murmann H, Neuhauser J, Ryter F, Sips A C C, Stäbler A, Stober J, Suttrop W, Zohm H 2002 Plasma Phys. Control. Fusion 44 811

    [2]

    Sang C, Zhou Q, Xu G, Wang L, Wang Y, Zhao X, Zhang C, Ding R, Jia G, Yao D, Liu X, Si H, Wang D 2021 Nucl. Fusion 61 066004

    [3]

    Liu B, Dai S Y, Yang X D, Chan V S, Ding R, Zhang H M, Feng Y, Wang D Z 2022 Nucl. Fusion 62 126040

    [4]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696

    [5]

    Gruber O, Sips A C C, Dux R, Eich T, Fuchs J C, Herrmann A, Kallenbach A, Maggi C F, Neu R, Pütterich T, Schweinzer J, Stober J 2009 Nucl. Fusion 49 115014

    [6]

    Sun Z, Lian Z, Qiao W, Yu J, Han W, Fu Q, Zhu K 2017 Chin. Phys. Lett. 34 030205

    [7]

    Zhang Q, Le W, Zhang Y, Ge Z, Kuang Z, Xiao S, Wang L 2024 Acta Phys. Sin. 73 185201

    [8]

    Angioni C 2021 Plasma Phys. Control. Fusion 63 073001

    [9]

    Guirlet R, Giroud C, Parisot T, Puiatti M E, Bourdelle C, Carraro L, Dubuit N, Garbet X, Thomas P R 2006 Plasma Phys. Control. Fusion 48 B63

    [10]

    Donnel P 2018 Ph.D. thesis (Aix-Marseille: Aix Marseille Université)

    [11]

    Shi S, Chen J, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y, Chao Y, Zhang L, Duan Y, Wu M, Ding F, Li Y, Huang J, Qian J, Gao X, Wan Y 2022 Nucl. Fusion 62 066031

    [12]

    Shi S, Chen J, Jian X, Odstrčil T, Clarrisse B, Wu M, Wu M, Duan Y, Chao Y, Zhang L, Cheng Y, Qian J, Garofalo A M, Gong X, Gao X, Wan Y 2022 Nucl. Fusion 62 066040

    [13]

    Pütterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036

    [14]

    Lee H, Lee H, Han Y S, Song J, Belli E A, Choe W, Kang J, Lee J, Candy J, Lee J 2022 Phys. Plasmas 29 022504

    [15]

    Zhao W, Zhang L, Cheng Y, Zhou C, Zhang W, Duan Y, Hu A, Wang S, Zhang F, Li Z, Cao Y, Liu H 2024 Acta Phys. Sin. 73 035201

    [16]

    Mochinaga S, Kasuya N, Fukuyama A, Yagi M 2024 Nucl. Fusion 64 066002

    [17]

    Lim K, Garbet X, Sarazin Y, Gravier E, Lesur M, Lo-Cascio G, Rouyer T 2023 Phys. Plasmas 30 082501

    [18]

    Zheng G Y, Cai L Z, Duan X R, Xu X Q, Ryutov D D, Cai L J, Liu X, Li J X, Pan Y D 2016 Nucl. Fusion 56 126013

    [19]

    Cao C, Huang X, Hu Y, Xie Y, Zhou J, Qiao T, Gao J, Cai L, Cao Z 2025 Nucl. Mater. Energy 42 101852

    [20]

    Han J, He Y, Zhao D, Cai L, Wang Y, Qian W, Huang W, Lu Y, Cai L, Zhong W 2025 Nucl. Mater. Energy 42 101861

    [21]

    Zhang X L, He Z Y H, Cheng Z F, Yan W, Dong Y B, Liu Y, Deng W, Fu B Z, Shi Z B, Zhang Y P, Shi Y J 2024 Fusion Eng. Des. 208 114674

    [22]

    Zhou Q, Zhang Y, Sang C, Li J, Zheng G, Wang Y, Wu Y 2024 Plasma Sci. Technol. 26 104003

    [23]

    Zhang Y, Sang C, Li J, Zheng G, Senichenkov I Y, Rozhansky V A, Zhang C, Wang Y, Zhao X, Wang D 2022 Nucl. Fusion 62 106006

    [24]

    Dux R 2006 STRAHL User Manual Report

    [25]

    Wu Y, Zhou Q, Sang C, Zhang Y, Wang Y, Wang D 2022 Nucl. Mater. Energy 33 101297

    [26]

    Zhou Y, Zheng G, Du H, Li J, Xue L 2022 Fusion Eng. Des. 182 113222

    [27]

    Jirakova K, Kovanda O, Adamek J, Komm M, Seidl J 2019 J. Instrum. 14 C11020

    [28]

    Wang J, Wu B, Wang J, Hu C 2013 J. Fusion Energy 33 20

    [29]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E 2009 Phys. Plasmas 16 060704

    [30]

    Logan N C, Grierson B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Fusion Sci. Technol. 74 125

    [31]

    Dux R, Loarte A, Angioni C, Coster D, Fable E, Kallenbach A 2017 Nucl. Mater. Energy 12 28

    [32]

    Dubuit N, Garbet X, Parisot T, Guirlet R, Bourdelle C 2007 Phys. Plasmas 14 042301

    [33]

    Dux R 2004 Ph.D. thesis (Garching: Max Planck Institut für Plasmaphysik)

    [34]

    Wang Y, Sang C, Zhao X, Wu Y, Zhou Q, Zhang Y, Wang D 2023 Nucl. Fusion 63 096024

    [35]

    Du H, Sang C, Wang L, Sun J, Liu S, Wang H, Zhang L, Guo H, Wang D 2013 Acta Phys. Sin. 62 245206

    [36]

    Wang Y, Sang C, Zhang C, Zhao X, Zhang Y, Jia G, Senichenkov I Y, Wang L, Zhou Q, Wang D 2021 Plasma Phys. Control. Fusion 63 085002

    [37]

    Sang C, Ding R, Bonnin X, Wang L, Wang D, EAST Team 2018 Phys. Plasmas 25 072511

    [38]

    Zhao X, Sang C, Zhou Q, Zhang C, Zhang Y, Ding R, Ding F, Wang D 2020 Plasma Phys. Control. Fusion 62 055015

    [39]

    Zhou Q, Sang C, Xu G, Ding R, Zhao X, Wang Y, Wang D 2020 Nucl. Mater. Energy 25 100849

    [40]

    Shi S, Chen J, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y, Chao Y, Zhang L, Duan Y, Wu M, Ding F, Qian J, Gao X 2022 Nucl. Fusion 62 066032

    [41]

    Shi S, Jian X, Chan V S, Gao X, Liu X, Shi N, Chen J, Liu L, Wu M, Zhu Y 2018 Nucl. Fusion 58 126020

    [42]

    Wesson J 2011 Tokamaks (Oxford: Oxford University Press) pp153-161

  • [1] Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian. Current status and prospects of burning plasma physics in magnetically confined fusion. Acta Physica Sinica, doi: 10.7498/aps.73.20240831
    [2] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230991
    [3] Hao Bao-Long, Li Ying-Ying, Chen Wei, Hao Guang-Zhou, Gu Xiang, Sun Tian-Tian, Wang Yu-Min, Dong Jia-Qi, Yuan Bao-Shan, Peng Yuan-Kai, Shi Yue-Jiang, Xie Hua-Sheng, Liu Min-Sheng, ENN TEAM. Optimizing numerical simulation of beam ion loss due to toroidal field ripple on EXL-50U spherical torus. Acta Physica Sinica, doi: 10.7498/aps.72.20230749
    [4] Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group. Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling. Acta Physica Sinica, doi: 10.7498/aps.71.20211941
    [5] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, doi: 10.7498/aps.70.20201491
    [6] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, doi: 10.7498/aps.70.20201972
    [7] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, doi: 10.7498/aps.68.20182091
    [8] Tang Xiong-Xin, Qiu Ji-Si, Fan Zhong-Wei, Wang Hao-Cheng, Liu Yue-Liang, Liu Hao, Su Liang-Bi. Experimental study of diode-pumped Nd, Y:CaF2 amplifier for inertial confinement fusion laser driver. Acta Physica Sinica, doi: 10.7498/aps.65.204206
    [9] Li Zhen-Wu. Kondo effect on the electrical transport properties of carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.62.096101
    [10] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, doi: 10.7498/aps.61.145204
    [11] Chen Da-Peng, Zeng Zhi, Zhang Cun-Lin, Jin Xue-Yuan, Zhang Zheng. Infrared thermal wave imaging for inspecting the insulation layer of superconducting busbar in thermonuclear experimental reactor. Acta Physica Sinica, doi: 10.7498/aps.61.094207
    [12] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, doi: 10.7498/aps.61.068703
    [13] Yu Bo, Ying Yang-Jun, Xu Hai-Bo. Optimization of diagnostic system for neutron penumbral imaging in inertial confinement fusion. Acta Physica Sinica, doi: 10.7498/aps.59.4100
    [14] Shi Chun-Hua, Qiu Xi-Jun, An Wei-Ke, Li Ru-Xin. Influence of intense pulse laser on penetron-atomic ionization in muon-catalysed fusion. Acta Physica Sinica, doi: 10.7498/aps.54.4087
    [15] An Wei-Ke, Qiu Xi-Jun, Zhu Zhi-Yuan. Theoretical study on the nuclear fusion mechanism of deuterium clusters aroused by Coulomb explosions with femtosecond intense laser. Acta Physica Sinica, doi: 10.7498/aps.53.2250
    [16] WANG TIE-SHAN, KENTARO OCHIAI, KATHUHIKO MARUTA, TOSHIYUKI IIDA, AKITO TAKAHASHI. NUCLEAR CLUSTER EFFECT IN THE INTERACTION OF DEUTERIUM CLUSTER ION (d+3) AND SOLID (PdDx). Acta Physica Sinica, doi: 10.7498/aps.47.1957
    [17] LI JUN, XU QIANG-HUA, CHEN QING-MING. ELECTRON ENERGY DISTRIBUTIONS AND TRANSPORT COEFFICIENTS FOR MAGNETICALLY CONFINED GAS LASERS. Acta Physica Sinica, doi: 10.7498/aps.43.30
    [18] ZHOU HAI-LIN. NEOCLASSICAL TRANSPORT THEORY OF A MULTICOMPONENT PLASMA. Acta Physica Sinica, doi: 10.7498/aps.33.309
    [19] XU ZHI-ZHAN, ZHANG WEN-QI, PAN ZHONG-XIONG, WANG YI-FEI. ONE-DIMENSIONAL THREE-TEMPERATURE CALCULATIONS FOR LASER FUSION. Acta Physica Sinica, doi: 10.7498/aps.31.1267
    [20] Lin Zhong-heng;Yin Guang-yu. LASER FUSION SIMULATION. Acta Physica Sinica, doi: 10.7498/aps.28.455
Metrics
  • Abstract views:  108
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2025

/

返回文章
返回
Baidu
map