Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated simulation of plasma current profile in HL-2A high confinement mode(H mode)

Zhang Hong-Ming Wu Jing Li Jia-Xian Yao Lie-Ming Xu Jiang-Cheng Wu Yan-Zhan Liu Qi-Yan Guo Peng-Cheng

Citation:

Integrated simulation of plasma current profile in HL-2A high confinement mode(H mode)

Zhang Hong-Ming, Wu Jing, Li Jia-Xian, Yao Lie-Ming, Xu Jiang-Cheng, Wu Yan-Zhan, Liu Qi-Yan, Guo Peng-Cheng
PDF
HTML
Get Citation
  • The plasma current (Ip), magnetic field (B), and safety factor distribution (q profile) of the HL-2A tokamak device are crucial to monitoring the steady-state operational scenarios (in high confinement mode, H mode). Based on real experimental data and integrated modeling simulation method (OMFIT), the plasma parameters’ profiles such as magnetic field configuration and current density profiles in H mode were reconstructed. By building up an integrated simulation platform for dynamic equilibrium configuration, and combining the rapid workflow processing method and experimental data with integrated simulation models, the ion and electron temperature, density, and current density profiles were obtained. The integration simulation platform was established to reconstruct the internal magnetic surface configuration, the plasma boundary parameter distribution, the ion/electron temperature, current density, and the q profile. The Ohmic current, bootstrap current, and radio-frequency current profiles with its fractions were calculated. The width of the pedestal region was about 7.52 cm according to our simulation results. It was found that the pressure gradient changes its direction at radial coordinate ρ(r/a) = 0.1 and reaches its maximum value near ρ = 0.7, which may be the internal transport barrier (ITB) configuration caused by negative shear. The profile reconstruction and real-time monitoring of the physical parameters are conducive to evaluating the quality of H mode discharge experiment and can assist in the steady-state operation of advanced operating modes such as HL-2M high normalized beta (βn) discharge.
      Corresponding author: Wu Jing, wujing@uestc.edu.cn ; Li Jia-Xian, lijx@swip.ac.cn ; Yao Lie-Ming, ylm@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFE03020004).
    [1]

    Wagner F 1982 Phys. Re. Lett. 49 1408Google Scholar

    [2]

    李凯 2020 博士学位论文 (合肥: 中国科学技术大学)

    Li K 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [3]

    钟武律, 段旭如 2020 原子核物理评论 37 462Google Scholar

    Zhong W L, Duan X R 2020 Nucl. Phys. Re. 37 462Google Scholar

    [4]

    Snyder P B, Aiba N, Beurskens M 2009 Nucl. Fusion 49 085035Google Scholar

    [5]

    Stacey W M, Groebner R J 2003 Phys. Plasm. 10 2412Google Scholar

    [6]

    Lao L L, Ferron J R, Groebner R J, et al. 1990 Nucl. Fusion 30 103549

    [7]

    Fellinger P, Marklein R, Langenberg K J, Klaholz S 1995 Wave Motion 21 47Google Scholar

    [8]

    陈文锦, 何小雪, 刘亮, 魏彦玲, 马倩, 余德良 2016 核聚变与等离子体物理 36 104Google Scholar

    Chen W J, He X X, Liu L, Wei Y L, Ma Q, Yu D L 2016 Nucl. Fusion Plasma Phys. 36 104Google Scholar

    [9]

    Logan N C, Grierson, B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Nucl. Fusion 74 125Google Scholar

    [10]

    Meneghini O, Lao L 2013 Plasma Fusion Res. 8 2403009Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, et al. 2015 Nucl. Fusion 55 083008Google Scholar

    [12]

    吴木泉 2020 博士学位论文 (合肥: 中国科学技术大学)

    Wu M Q 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    李强 2009 原子能科学技术 S2 204

    Li Q 2009 Atomic Energy Sci. Technol. S2 204 (in Chinese)

    [14]

    饶军, 陆志鸿, 张劲松等 2009 核聚变与等离子体物理 29 324Google Scholar

    Rao J, Lu Z H, Zhang J S, et al. 2009 Nucl. Fusion Plasma Phys. 29 324Google Scholar

    [15]

    Owen L W, Canik J M, Groebner R J, et al. 2010 Nucl. Fusion 50 64017Google Scholar

    [16]

    Beurskens M N A, Giudicotti L, Kempenaarsl M, et al. 2008 Re. Scient. Instrum. 79 10.1063

    [17]

    Candy J, Holland C, Waltz R E, et al. 2009 Phys. Plasmas 16 2137

    [18]

    Staebler G M, Belli E A, Candy J, Kinsey J E, Dudding H, Patel B 2021 Nuclear Fusion 61 116007Google Scholar

    [19]

    Staebler G M, Kinsey J E, Belli E A, et al. 2014 Phys. Plasmas 21 1596

    [20]

    Belli E A, Candy J, Angioni C 2014 Plasma Phys. Control. Fusion 56 124002Google Scholar

    [21]

    Shaing K C, Lai A L 2013 Phys. Plasmas 20 122504Google Scholar

    [22]

    Hubbard A E, Boivin R L, Granetz R S, et al. 1998 Phys. Plasmas 5 1744Google Scholar

    [23]

    Belli E A, Candy J 2021 Phys. Plasmas 28 062301Google Scholar

    [24]

    Staebler G M, Candy J, Belli E A, Kinsey J E, Bonanomi N, Patel B 2021 Plasma Phys. Control. Fusion 63 015013Google Scholar

    [25]

    Snyder P B, Groebner R J, Hughes J W, et al. 2011 Nucl. Fusion 51 103016Google Scholar

    [26]

    Gao X, Zhang T, Han X, et al. 2015 Nucl. Fusion 55 083015Google Scholar

    [27]

    Groebner R J, Baker D R, Burrell K H, et al. 2001 Nucl. Fusion 41 1789Google Scholar

    [28]

    Groebner R J, Osborne T H 1998 Phys. Plasmas 5 1800Google Scholar

    [29]

    Kinsey J E, Staebler G M, Candy J, et al. 2011 Nucl. Fusion 51 83001Google Scholar

    [30]

    McDonald D C, Cordey J G, Thomsen K, 2007 Nucl. Fusion 47 147Google Scholar

    [31]

    Saibene G, Sartori R, Loarte A, et al. 2002 Plasma Phys. Control. Fusion 44 1769Google Scholar

  • 图 1  HL-2A高约束模式(H模)放电模拟循环示意图

    Figure 1.  Design and analysis of HL-2A high confinement model (H model) discharge integrated simulation workflow.

    图 2  HL-2A炮号#37012放电参数

    Figure 2.  Shot #37012 parameters of HL-2A discharge.

    图 3  HL-2A托卡马克平衡物理参数实验数据 (a)等离子体中离子温度Ti径向分布; (b)电子温度Te径向分布; (c)电子密度ne径向分布

    Figure 3.  (a) Radial distribution profile of ion temperature Ti in HL-2A Tokamak plasma; (b) radial distribution profile of electron temperature Te in HL-2A Tokamak plasma; (c) radial distribution profile of electron density ne in HL-2A tokamak plasma.

    图 4  HL-2A 实验数据处理,物理参数拟合径向分布和OMFIT耦合流程

    Figure 4.  Flow chart for getting fitting curve processing by using discrete and interpolation of HL-2A experimental data

    图 5  采用集成模拟程序OMFIT重建的 (a) HL-2A的电子温度Te和离子温度Ti剖面; (b)电子密度ne剖面

    Figure 5.  Reconstruction of HL-2A parameters by OMFIT integrated simulation code: (a) Electron temperature Te and ion temperature Ti profiles; (b) electron density ne profile.

    图 6  HL-2A托卡马克等离子体电子密度(a)、电子温度(b)、离子温度(c)和旋转角速度(d)随径向剖面的集成模拟和实验拟合结果对比

    Figure 6.  HL-2A Tokamak electron density (a), electron temperature(b), ion temperature (c), rotational angular velocity, and (d) versus radial profile by OMFIT and experimental fitting in shot #37012.

    图 7  集成模拟程序OMFIT得到的HL-2A托卡马克等离子体磁场位形结构图 (a); 等离子体压强(单位Pa)径向剖面分布(b); 压强梯度P’(无量纲)径向分布(c); 安全因子q(无量纲)随着径向变化分布剖面(d); 极向电流梯度FF'(A/m3)径向分布剖面(e)

    Figure 7.  HL-2A Tokamak plasma magnetic field configuration obtained by integrated simulation code OMFIT (a); pressure profile(unit Pa) (b); profile distribution of the pressure gradient(Dimensionless quantity) (c); profile distribution of safety factor q (Dimensionless quantity) obtained (d); profile distribution of the polar current gradient FF' (unit A/m3)(e).

    图 8  (a)磁约束托卡马克装置shot #37012由集成模拟程序OMFIT计算的整体电流密度、包含中性束电流密度、自举电流密度、欧姆电流密度和射频电流密度及份额分布曲线; (b)OMFIT程序和平衡反演程序EFIT计算的安全因子q剖面对比图

    Figure 8.  (a) Magnetic confinement Tokamak device shot #37012 total current densities calculated by the integrated simulation program OMFIT, including neutral beam current density, bootstrap current density, Ohmic current density, and RF current density with percentages of respective current densities in total current densities; (b) comparison of the safety factor q profiles calculated by the OMFIT program and the balance inversion code EFIT.

    Baidu
  • [1]

    Wagner F 1982 Phys. Re. Lett. 49 1408Google Scholar

    [2]

    李凯 2020 博士学位论文 (合肥: 中国科学技术大学)

    Li K 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [3]

    钟武律, 段旭如 2020 原子核物理评论 37 462Google Scholar

    Zhong W L, Duan X R 2020 Nucl. Phys. Re. 37 462Google Scholar

    [4]

    Snyder P B, Aiba N, Beurskens M 2009 Nucl. Fusion 49 085035Google Scholar

    [5]

    Stacey W M, Groebner R J 2003 Phys. Plasm. 10 2412Google Scholar

    [6]

    Lao L L, Ferron J R, Groebner R J, et al. 1990 Nucl. Fusion 30 103549

    [7]

    Fellinger P, Marklein R, Langenberg K J, Klaholz S 1995 Wave Motion 21 47Google Scholar

    [8]

    陈文锦, 何小雪, 刘亮, 魏彦玲, 马倩, 余德良 2016 核聚变与等离子体物理 36 104Google Scholar

    Chen W J, He X X, Liu L, Wei Y L, Ma Q, Yu D L 2016 Nucl. Fusion Plasma Phys. 36 104Google Scholar

    [9]

    Logan N C, Grierson, B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Nucl. Fusion 74 125Google Scholar

    [10]

    Meneghini O, Lao L 2013 Plasma Fusion Res. 8 2403009Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, et al. 2015 Nucl. Fusion 55 083008Google Scholar

    [12]

    吴木泉 2020 博士学位论文 (合肥: 中国科学技术大学)

    Wu M Q 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [13]

    李强 2009 原子能科学技术 S2 204

    Li Q 2009 Atomic Energy Sci. Technol. S2 204 (in Chinese)

    [14]

    饶军, 陆志鸿, 张劲松等 2009 核聚变与等离子体物理 29 324Google Scholar

    Rao J, Lu Z H, Zhang J S, et al. 2009 Nucl. Fusion Plasma Phys. 29 324Google Scholar

    [15]

    Owen L W, Canik J M, Groebner R J, et al. 2010 Nucl. Fusion 50 64017Google Scholar

    [16]

    Beurskens M N A, Giudicotti L, Kempenaarsl M, et al. 2008 Re. Scient. Instrum. 79 10.1063

    [17]

    Candy J, Holland C, Waltz R E, et al. 2009 Phys. Plasmas 16 2137

    [18]

    Staebler G M, Belli E A, Candy J, Kinsey J E, Dudding H, Patel B 2021 Nuclear Fusion 61 116007Google Scholar

    [19]

    Staebler G M, Kinsey J E, Belli E A, et al. 2014 Phys. Plasmas 21 1596

    [20]

    Belli E A, Candy J, Angioni C 2014 Plasma Phys. Control. Fusion 56 124002Google Scholar

    [21]

    Shaing K C, Lai A L 2013 Phys. Plasmas 20 122504Google Scholar

    [22]

    Hubbard A E, Boivin R L, Granetz R S, et al. 1998 Phys. Plasmas 5 1744Google Scholar

    [23]

    Belli E A, Candy J 2021 Phys. Plasmas 28 062301Google Scholar

    [24]

    Staebler G M, Candy J, Belli E A, Kinsey J E, Bonanomi N, Patel B 2021 Plasma Phys. Control. Fusion 63 015013Google Scholar

    [25]

    Snyder P B, Groebner R J, Hughes J W, et al. 2011 Nucl. Fusion 51 103016Google Scholar

    [26]

    Gao X, Zhang T, Han X, et al. 2015 Nucl. Fusion 55 083015Google Scholar

    [27]

    Groebner R J, Baker D R, Burrell K H, et al. 2001 Nucl. Fusion 41 1789Google Scholar

    [28]

    Groebner R J, Osborne T H 1998 Phys. Plasmas 5 1800Google Scholar

    [29]

    Kinsey J E, Staebler G M, Candy J, et al. 2011 Nucl. Fusion 51 83001Google Scholar

    [30]

    McDonald D C, Cordey J G, Thomsen K, 2007 Nucl. Fusion 47 147Google Scholar

    [31]

    Saibene G, Sartori R, Loarte A, et al. 2002 Plasma Phys. Control. Fusion 44 1769Google Scholar

  • [1] Long Ting, Ke Rui, Wu Ting, Gao Jin-Ming, Cai Lai-Zhong, Wang Zhan-Hui, Xu Min. Studies of edge poloidal rotation and turbulence momentum transport during divertor detachment on HL-2A tokamak. Acta Physica Sinica, 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] Li Zheng-Ji, Chen Wei, Sun Ai-Ping, Yu Li-Ming, Wang Zhuo, Chen Jia-Le, Xu Jian-Qiang, Li Ji-Quan, Shi Zhong-Bing, Jiang Min, Li Yong-Gao, He Xiao-Xue, Yang Zeng-Chen, Li Jian. Integrated analysis of high-βN double transport barriers scenario on HL-2A. Acta Physica Sinica, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [3] Yan Xiao-Yu, He Xiao-Fei, Yu Li-Ming, Liu Liang, Chen Wei, Shi Zhong-Bing, Lu Jie, Wei Hui-Ling, Han Ji-Feng, Zhang Yi-Po, Zhong Wu-Lü, Xu Min. Physical design and primary experimental results of imaging neutral particle analyzer on HL-2A tokamak. Acta Physica Sinica, 2023, 72(21): 215212. doi: 10.7498/aps.72.20230768
    [4] Shi Pei-Wan, Zhu Xiao-Long, Chen Wei, Yu Xin, Yang Zeng-Chen, He Xiao-Xue, Wang Zheng-Xiong. Effect of deposition location of electron cyclotron resonance heating on active control of fishbone modes in the HL-2A tokamak. Acta Physica Sinica, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [5] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [6] Sun Zi-Yuan, Wang Yuan-Zhen, Liu Yue. Numerical study on predicting MHD stability of HL-2A tokamak pedestal structure. Acta Physica Sinica, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [7] Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group. Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling. Acta Physica Sinica, 2022, 71(7): 075201. doi: 10.7498/aps.71.20211941
    [8] Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian. Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A. Acta Physica Sinica, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [9] Li An-Liang, Cai Hong, Zhang She-Feng, Bai Xi-Bin. Control and modeling of suspending stabilization problom for floated inertial platform. Acta Physica Sinica, 2013, 62(15): 150203. doi: 10.7498/aps.62.150203
    [10] Feng Bei-Bin, Yao Liang-Hua, Chen Cheng-Yuan, Ji Xiao-Quan, Zhong Wu-Lü, Shi Zhong-Bing, Yu De-Liang, Cui Zheng-Ying, Song Xian-Ming, Duan Xu-Ru. Experimental study of L-H transition triggered by supersonic molecular beam injection in the HL-2A tokamak. Acta Physica Sinica, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [11] Liu Chun-Hua, Nie Lin, Huang Yuan, Ji Xiao-Quan, Yu De-Liang, Liu Yi, Feng Zhen, Yao Ke, Cui Zheng-Ying, Yan Long-Wen, Ding Xuan-Tong, Dong Jia-Qi, Duan Xu-Ru. Preliminary behavior studies of edge localized modes on HL-2A. Acta Physica Sinica, 2012, 61(20): 205201. doi: 10.7498/aps.61.205201
    [12] Zheng Ling, Zhao Qing, Zhou Yan. Simulation of protective effect of the buffer on the first mirror in HL-2A tokamak. Acta Physica Sinica, 2011, 60(8): 085204. doi: 10.7498/aps.60.085204
    [13] Zhong Wu-Lü, Duan Xu-Ru, Yu De-Liang, Han Xiao-Yu, Yang Li-Mei. Simulation of the neutral beam emission spectroscopy on the HL-2A tokamak. Acta Physica Sinica, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [14] Hong Wen-Yu, Yan Long-Wen, Zhao Kai-Jun, Lan Tao, Dong Jia-Qi, Yu Chang-Xuan, Cheng Jun, Qian Jun, Liu A-Di, Luo Cui-Wen, Xu Zheng-Yu, Huang Yuan, Yang Qing-Wei. Study of three dimensional zonal flows characteristic and novel probe design in HL-2A. Acta Physica Sinica, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [15] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [16] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [17] You Tian-Xue, Yuan Bao-Shan, Li Fang-Zhu. Plasma boundary identification in HL-2A by means of the movable current filaments method. Acta Physica Sinica, 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [18] Zheng Yin-Jia, Huang Yuan, Feng Zhen, Shi Le, Cui Cheng-He, Wang Ming-Xu, Xu Hong-Bing. Investigation of gas puff imaging on HL-2A tokamak. Acta Physica Sinica, 2007, 56(3): 1452-1460. doi: 10.7498/aps.56.1452
    [19] Yuan Bao-Shan, You Tian-Xue, Qin Yun-Wen, Feng Bei-Bin, Ji Xiao-Quan. Real-time determination of plasma confinement parameters in HL-2A. Acta Physica Sinica, 2006, 55(3): 1315-1319. doi: 10.7498/aps.55.1315
    [20] Yuan Bao-Shan, You Tian-Xue, Liu Li, Li Fang-Zhu, Yang Qing-Wei, Fen Bei-Bin. Real-time visualization system of plasma shape for HL-2A. Acta Physica Sinica, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
Metrics
  • Abstract views:  5330
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2021
  • Accepted Date:  23 July 2021
  • Available Online:  17 August 2021
  • Published Online:  05 December 2021

/

返回文章
返回
Baidu
map