-
钨杂质聚芯控制对于托卡马克的稳态运行十分重要,本文主要采用杂质输运程序STRAHL模拟研究了新经典输运对钨杂质在芯部聚集的影响。针对HL-3装置未来采用钨偏滤器、在氩气注入放电情况开展研究,其中边缘和芯部背景等离子体参数分别由SOLPS-ITER及OMFIT模拟获得。边界区域的钨杂质输运使用IMPEDGE程序进行模拟,并同STRAHL的结果进行对比,确保芯边杂质分布的一致性和模拟结果的准确性,从而得到了钨杂质从边界区域至芯部的完整分布。在此基础上,分别模拟了有无新经典对流情况下钨杂质的输运。模拟结果表明,无新经典对流时,湍流输运主导杂质输运,其方向指向内,会导致杂质在芯部聚集。加入新经典对流后,其方向指向外,其在一定程度上抵消了向内的湍流对流,从而显著降低芯部钨杂质密度。其中区域ρ = 0.72 - 0.90的新经典对流对芯部杂质密度下降起到了更为重要的作用。进一步分析新经典对流各分量,研究表明PS(Pfirsche-Schlüter)分量主导新经典对流项,其主要是由离子温度梯度项驱动。因此,实验上可以通过加热等方式,增强离子温度梯度,抑制杂质聚芯。Controlling of tungsten (W) impurity core accumulation is of great significance for the steady-state operation of tokamaks. This work mainly investigates the effect of neoclassical transport on the core accumulation of W impurities using STRAHL code. The study focuses on the HL-3 device, which will use tungsten divertor and conduct research under argon gas injection discharge conditions. In the simulation, the edge and core background plasma parameters are obtained by SOLPS-ITER and OMFIT simulations, respectively. The distribution of tungsten impurities in the boundary region is simulated using the IMPEDGE code. The edge anomalous transport coefficient in STRAHL is adjusted accordingly, and the simulation results are compared with those from IMPEDGE to ensure consistency in impurity distribution between the core and edge. In the core region, a numerical scan is performed to adjust the simulation results so that the energy radiation matches the setting values, thereby determining the specific turbulence convection velocity. By setting the coefficients for both the core and boundary regions, a complete distribution of W impurities from boundary to the core is obtained. To account the neoclassical transport effects, the neoclassical transport coefficients are calculated using the subroutine NEOART and applied to the impurity transport simulation, and the simulation region is set from ρ= 0.0 to 0.9. On this basis, the transport of W impurities with and without neoclassical convection is simulated. The simulation results show that without neoclassical convection, anomalous transport dominates the impurity transport, which is directed inward and enhances impurity accumulation in the core, and the core impurity density reaches 1.1×1016 m-3. After introducing neoclassical convection whose direction is outward, it can offset the inward anomalous convection and significantly reduces the W impurity density in the core, significantly reducing the core tungsten impurity density to 4.0×1015 m-3. In additional, the neoclassical convection in the region of ρ = 0.72 - 0.90 plays a more important role in reducing the core impurity density. Further analysis of the components of neoclassical convection shows that the PS (Pfirsche-Schlüter) component dominates the neoclassical convection term, which is mainly driven by the ion temperature gradient term. Therefore, experimentally, plasma heating can be used to enhance the temperature gradient and suppress impurity core accumulation.
-
Keywords:
- Magnetic confinement fusion /
- Neoclassical transport /
- Core tungsten impurity accumulation
-
[1] Neu R, Dux R, Geier A, Kallenbach A, Pugno R, Rohde V, Bolshukhin D, Fuchs J C, Gehre O, Gruber O, Hobirk J, Kaufmann M, Krieger K, Laux M, Maggi C, Murmann H, Neuhauser J, Ryter F, Sips A C C, Stäbler A, Stober J, Suttrop W, Zohm H 2002 Plasma Phys. Control. Fusion 44 811
[2] Sang C, Zhou Q, Xu G, Wang L, Wang Y, Zhao X, Zhang C, Ding R, Jia G, Yao D, Liu X, Si H, Wang D 2021 Nucl. Fusion 61 066004
[3] Liu B, Dai S Y, Yang X D, Chan V S, Ding R, Zhang H M, Feng Y, Wang D Z 2022 Nucl. Fusion 62 126040
[4] Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696
[5] Gruber O, Sips A C C, Dux R, Eich T, Fuchs J C, Herrmann A, Kallenbach A, Maggi C F, Neu R, Pütterich T, Schweinzer J, Stober J 2009 Nucl. Fusion 49 115014
[6] Sun Z, Lian Z, Qiao W, Yu J, Han W, Fu Q, Zhu K 2017 Chin. Phys. Lett. 34 030205
[7] Zhang Q, Le W, Zhang Y, Ge Z, Kuang Z, Xiao S, Wang L 2024 Acta Phys. Sin. 73 185201
[8] Angioni C 2021 Plasma Phys. Control. Fusion 63 073001
[9] Guirlet R, Giroud C, Parisot T, Puiatti M E, Bourdelle C, Carraro L, Dubuit N, Garbet X, Thomas P R 2006 Plasma Phys. Control. Fusion 48 B63
[10] Donnel P 2018 Ph.D. thesis (Aix-Marseille: Aix Marseille Université)
[11] Shi S, Chen J, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y, Chao Y, Zhang L, Duan Y, Wu M, Ding F, Li Y, Huang J, Qian J, Gao X, Wan Y 2022 Nucl. Fusion 62 066031
[12] Shi S, Chen J, Jian X, Odstrčil T, Clarrisse B, Wu M, Wu M, Duan Y, Chao Y, Zhang L, Cheng Y, Qian J, Garofalo A M, Gong X, Gao X, Wan Y 2022 Nucl. Fusion 62 066040
[13] Pütterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036
[14] Lee H, Lee H, Han Y S, Song J, Belli E A, Choe W, Kang J, Lee J, Candy J, Lee J 2022 Phys. Plasmas 29 022504
[15] Zhao W, Zhang L, Cheng Y, Zhou C, Zhang W, Duan Y, Hu A, Wang S, Zhang F, Li Z, Cao Y, Liu H 2024 Acta Phys. Sin. 73 035201
[16] Mochinaga S, Kasuya N, Fukuyama A, Yagi M 2024 Nucl. Fusion 64 066002
[17] Lim K, Garbet X, Sarazin Y, Gravier E, Lesur M, Lo-Cascio G, Rouyer T 2023 Phys. Plasmas 30 082501
[18] Zheng G Y, Cai L Z, Duan X R, Xu X Q, Ryutov D D, Cai L J, Liu X, Li J X, Pan Y D 2016 Nucl. Fusion 56 126013
[19] Cao C, Huang X, Hu Y, Xie Y, Zhou J, Qiao T, Gao J, Cai L, Cao Z 2025 Nucl. Mater. Energy 42 101852
[20] Han J, He Y, Zhao D, Cai L, Wang Y, Qian W, Huang W, Lu Y, Cai L, Zhong W 2025 Nucl. Mater. Energy 42 101861
[21] Zhang X L, He Z Y H, Cheng Z F, Yan W, Dong Y B, Liu Y, Deng W, Fu B Z, Shi Z B, Zhang Y P, Shi Y J 2024 Fusion Eng. Des. 208 114674
[22] Zhou Q, Zhang Y, Sang C, Li J, Zheng G, Wang Y, Wu Y 2024 Plasma Sci. Technol. 26 104003
[23] Zhang Y, Sang C, Li J, Zheng G, Senichenkov I Y, Rozhansky V A, Zhang C, Wang Y, Zhao X, Wang D 2022 Nucl. Fusion 62 106006
[24] Dux R 2006 STRAHL User Manual Report
[25] Wu Y, Zhou Q, Sang C, Zhang Y, Wang Y, Wang D 2022 Nucl. Mater. Energy 33 101297
[26] Zhou Y, Zheng G, Du H, Li J, Xue L 2022 Fusion Eng. Des. 182 113222
[27] Jirakova K, Kovanda O, Adamek J, Komm M, Seidl J 2019 J. Instrum. 14 C11020
[28] Wang J, Wu B, Wang J, Hu C 2013 J. Fusion Energy 33 20
[29] Candy J, Holland C, Waltz R E, Fahey M R, Belli E 2009 Phys. Plasmas 16 060704
[30] Logan N C, Grierson B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Fusion Sci. Technol. 74 125
[31] Dux R, Loarte A, Angioni C, Coster D, Fable E, Kallenbach A 2017 Nucl. Mater. Energy 12 28
[32] Dubuit N, Garbet X, Parisot T, Guirlet R, Bourdelle C 2007 Phys. Plasmas 14 042301
[33] Dux R 2004 Ph.D. thesis (Garching: Max Planck Institut für Plasmaphysik)
[34] Wang Y, Sang C, Zhao X, Wu Y, Zhou Q, Zhang Y, Wang D 2023 Nucl. Fusion 63 096024
[35] Du H, Sang C, Wang L, Sun J, Liu S, Wang H, Zhang L, Guo H, Wang D 2013 Acta Phys. Sin. 62 245206
[36] Wang Y, Sang C, Zhang C, Zhao X, Zhang Y, Jia G, Senichenkov I Y, Wang L, Zhou Q, Wang D 2021 Plasma Phys. Control. Fusion 63 085002
[37] Sang C, Ding R, Bonnin X, Wang L, Wang D, EAST Team 2018 Phys. Plasmas 25 072511
[38] Zhao X, Sang C, Zhou Q, Zhang C, Zhang Y, Ding R, Ding F, Wang D 2020 Plasma Phys. Control. Fusion 62 055015
[39] Zhou Q, Sang C, Xu G, Ding R, Zhao X, Wang Y, Wang D 2020 Nucl. Mater. Energy 25 100849
[40] Shi S, Chen J, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y, Chao Y, Zhang L, Duan Y, Wu M, Ding F, Qian J, Gao X 2022 Nucl. Fusion 62 066032
[41] Shi S, Jian X, Chan V S, Gao X, Liu X, Shi N, Chen J, Liu L, Wu M, Zhu Y 2018 Nucl. Fusion 58 126020
[42] Wesson J 2011 Tokamaks (Oxford: Oxford University Press) pp153-161
计量
- 文章访问数: 81
- PDF下载量: 7
- 被引次数: 0