Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Global simulations of energetic electron excitation of beta-induced Alfvén eigenmodes

Bao Jian Zhang Wen-Lu Li Ding

Citation:

Global simulations of energetic electron excitation of beta-induced Alfvén eigenmodes

Bao Jian, Zhang Wen-Lu, Li Ding
PDF
HTML
Get Citation
  • The energetic electron (EE) excitation of beta-induced Alfvén eigenmodes is investigated by using the newly developed global eigenvalue code MAS, which is based on a hybrid model that consists of Landau fluid bulk plasma and drift kinetic EE. Specifically, the bulk plasma kinetic effects such as finite Larmor radius, diamagnetic drifts and Landau dampings, and the EE adiabatic fluid response of convection and non-adiabatic kinetic response of precessional drift resonance are incorporated in the simulations. The global eigenmode equation is solved for e-BAE mode structure and linear dispersion relation in tokamak non-perturbatively. The radial width of e-BAE mode structure becomes narrower as the toroidal mode number increases, which can be explained by the change of Alfvén continuous spectra that interact with kinetic Alfvén waves for corresponding eigenmode formation. The e-BAE growth rate exhibits a non-monotonic variation with toroidal mode number for precessional drift resonance destabilization, while the e-BAE real frequency is close to the continuum accumulation point that almost remains the same. The parametric dependence of e-BAE stability on EE density and that on temperature are analyzed by MAS non-perturbative simulations, which shows that the EE density can affect e-BAE real frequency and thus changes the resonance condition, resulting in e-BAE stabilization in the strong EE drive regime. Further, the EE non-perturbative effect on the symmetry breaking of e-BAE mode structure is reported. The poloidal symmetry breaking characterized by the ‘boomerang’ shape two-dimensional (2D) structure can be greatly enhanced by increasing EE temperature, together with the large radial variation of the poloidal phase angle of dominant principal poloidal harmonic. The radial symmetry breaking of e-BAE mode structure arises when EE density/temperature drive is not symmetric with respect to corresponding rational surface, which can lead to a net volume-averaged value of e-BAE parallel wave number which drives plasma intrinsic rotation. These results are helpful in understanding the e-BAE dynamics observed in recent experiments.
      Corresponding author: Bao Jian, jbao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275351, 11905290, 11835016) and the National MCF Energy R&D Program of China (Grant No. 2018YFE0304100).
    [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo T, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Chen L, Zonca F, 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Heidbrink W W 2008 Phys. Plasmas 15 055501Google Scholar

    [4]

    Heidbrink W W 2020 Phys. Plasmas 27 030901Google Scholar

    [5]

    Chen W, Ding X T, Yang Q W, Liu Y, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y 2010 Phys. Rev. Lett. 105 185004Google Scholar

    [6]

    Zhao N, Bao J, Chen W, Shi T H, Wang Z X, Yan N, Liu S C, Liu H Q, Zang Q, Lin S Y, Wu X H, Chu Y Q, Wang Y M, Wang S X, Hu W H, Chu N, Li M H, Zhai X M, Jie Y X, Jiang M, Lin X D, Gao X 2021 Nucl. Fusion 61 046013Google Scholar

    [7]

    Zonca F, Buratti P, Cardinali A, Chen L, Dong J Q, Long Y X, Milovanov A V, Romanelli F, Smeulders P, Wang L, Wang Z T, Castaldo C, Cesario R, Giovannozzi E, Marinucci M, Ridolfini V Pericoli 2007 Nucl. Fusion 47 1588Google Scholar

    [8]

    Ma R R, Qiu Z Y, Li Y Y, Chen W 2020 Nucl. Fusion 60 056019Google Scholar

    [9]

    Ma R R, Qiu Z Y, Li Y Y, Chen W 2021 Nucl. Fusion 61 036014Google Scholar

    [10]

    Cheng J Y, Zhang W L, Lin Z, Holod I, Li D, Chen Y, Cao J T 2016 Phys. Plasmas 23 052504Google Scholar

    [11]

    Wang J L, Todo Y, Wang H, Wang Z-X 2020 Nucl. Fusion 60 112012Google Scholar

    [12]

    Qiu Z Y, Chen L, Zonca F, Ma R R 2020 Plasma Phys. Control. Fusion 62 105012Google Scholar

    [13]

    Connor J, Hastie R J, Taylor J B 1979 Proc. Roy. Soc. London A 365 1720

    [14]

    Lee W W, Lewandowski J L V, Hahm T S, Lin Z 2001 Phys. Plasmas 8 4435Google Scholar

    [15]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [16]

    Bao J, Zhang W L, Li D, Lin Z, Qiu Z Y, Chen W, Zhu X, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion DOI: 10.1088/1741-4326/ad0598

    [17]

    Bao J, Zhang W L, Li D, Lin Z 2020 J. Fusion Energ. 39 382Google Scholar

    [18]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [19]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [20]

    Ma R R, Zonca F, Chen L 2015 Phys. Plasmas 22 092501Google Scholar

    [21]

    Lu Z X, Wang X, Lauber Ph, Zonca F 2018 Nucl. Fusion 58 082021Google Scholar

    [22]

    Cheng C Z 1992 Phys. Rep. 211 1Google Scholar

    [23]

    Heidbrink W W, Hansen E C, Austin M E, Kramer G J, van Zeeland M A 2022 Nucl. Fusion 62 066020Google Scholar

    [24]

    Wang Z X, Lin Z, Holod I, Heidbrink W W, Tobias B, van Zeeland M, Austin M E 2013 Phys. Rev. Lett. 111 145003Google Scholar

    [25]

    Liu Y Q, Lin Z, Zhang H S, Zhang W L 2017 Nucl. Fusion 57 114001Google Scholar

    [26]

    Diamond P H, Kosuga Y, Gürcan Ö D, McDevitt C J, Hahm T S, Fedorczak N, Rice J E, Wang W X, Ku S, Kwon J M, Dif-Pradalier G, Abiteboul J, Wang L, Ko W H, Shi Y J, Ida K, Solomon W, Jhang H, Kim S S, Yi S, Ko S H, Sarazin Y, Singh R, Chang C S 2013 Nucl. Fusion 53 104019Google Scholar

    [27]

    Dong G, Wei X, Bao J, Brochard G, Lin Z, Tang W M 2021 Nucl. Fusion 61 126061Google Scholar

  • 图 1  模拟采用的平衡参数(其中$ {\psi _{\text{T}}} $表示归一化环向磁通) (a)安全因子$ q $和磁剪切$ s=\dfrac{1}{q}\dfrac{{\rm{d}}q}{{\rm{d}}r} $剖面; (b)高能量电子密度$ {n}_{{\rm{h}}0} $及其梯度特征长度$ {L}_{{\rm{n}}, {\rm{h}}}^{-1}=\dfrac{1}{{n}_{{\rm{h}}0}}\dfrac{{\rm{d}}{n}_{{\rm{h}}0}}{{\rm{d}}r} $剖面

    Figure 1.  Simulation equilibrium parameters: (a) Radial profiles of safety factor $ q $ and magnetic shear $ s=\dfrac{1}{q}\dfrac{{\rm{d}}q}{{\rm{d}}r} $; (b) radial profiles of energetic electron density $ {n}_{{\rm{h}}0} $ and corresponding gradient scale length $ {L}_{{\rm{n}}, {\rm{h}}}^{-1}=\dfrac{1}{{n}_{{\rm{h}}0}}\dfrac{{\rm{d}}{n}_{{\rm{h}}0}}{{\rm{d}}r} $.

    图 2  (a)—(d)环向模数$ n=2 $, $ n=3 $, $ n=4 $$ n=5 $的连续谱, 其中细线代表声波, 粗线代表阿尔芬波, 彩色代表归一化的e-BAE振幅强弱; 纵轴刻度单位是$ V_{\rm A0}/R_0 $ (即磁轴处阿尔芬频率), 其中$ V_{\rm A0} = B_{0,{\rm a}}/\sqrt {4\pi {n_{{\rm i0},{\rm a}}}{m_{\rm i}}} $为磁轴处阿尔芬速度, $ {R_0} $为磁轴处大半径, B0,a为磁轴处磁场, ni0,a为磁轴处离子密度

    Figure 2.  (a)–(d) Continuous spectra of toroidal mode numbers $ n=2 $, $ n=3 $, $ n=4 $ and $ n=5 $, where the thin line represents the acoustic branch, the thick line represents the Alfvénic branch, and the colorbar represents the normalized radial amplitude of e-BAE.

    图 3  (a1)—(d1)环向模数$ n=2 $, $ n=3 $, $ n=4 $$ n=5 $的e-BAE静电势$ {\text{δ}} \phi $二维模结构; (a2)—(d2)各极向傅里叶分量剖面

    Figure 3.  (a1)–(d1) The 2D poloidal mode structures of electrostatic potential $ {\text{δ}} \phi $ of toroidal mode numbers $ n=2 $, $ n=3 $, $ n=4 $ and $ n=5 $; (a2)–(d2) radial profiles of each poloidal harmonics.

    图 4  e-BAE实频率和增长率随环向模数$ n $的变化, 其中纵轴刻度单位是$V_{\rm A0}/R_0 $ (即磁轴处阿尔芬频率)

    Figure 4.  The e-BAE real frequency and growth rate dependences on the toroidal mode number $ n $.

    图 5  e-BAE (a)实频率和(b)增长率随高能量电子密度和温度的依赖关系. A—E为参数空间下的5个代表算例, 用于下一步模结构分析. 青蓝色实线为e-BAE临界不稳定边界$ (\gamma =0) $, 五角星为激发e-BAE需要的最小高能量电子比压对应的密度和温度值

    Figure 5.  The e-BAE (a) real frequency and (b) growth rate dependences on energetic electron (EE) density and temperature. A—E are five typical cases for next mode structure analysis. Cyan solid line represents the boundary of marginal stable e-BAEs with $ \gamma =0 $, and the pentagram marks the EE density and temperature locations of the minimal value of EE $ {\beta }_{{\rm{h}}} $ required for e-BAE excitation.

    图 6  (a1)—(c1)图5中A, B, C算例的静电势$ {\text{δ}} \phi $二维模结构; (a2)—(c2) A, B, C算例中主极向分量$ {\text{δ}} {\phi }_{m=6} $及其相位角$ {\theta }_{{\rm{r}}}= {\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\dfrac{ {\rm{Im}} ({\text{δ}} {\phi }_{m=6}) } {{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6} ) }$的径向剖面, 灰色阴影部分表示e-BAE有限振幅区域

    Figure 6.  (a1)–(c1) The 2D poloidal mode structures of electrostatic potential $ {\text{δ}} \phi $ for cases A, B and C in Fig. 5; (a2)–(c2) the radial profiles of dominant principal poloidal harmonic of $ {\text{δ}} {\phi }_{m=6} $ and corresponding phase angle $ {\theta }_{{\rm{r}}}= {\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\dfrac{ {\rm{Im}} ({\text{δ}} {\phi }_{m=6}) } {{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6} ) } $, and the gray shaded region represents the radial domain with finite e-BAE amplitude.

    图 7  (a1)—(c1)图5中B, D, E算例的静电势$ {\text{δ}} \phi $二维模结构; (a2)—(c2) B, D, E算例中主极向分量$ {\text{δ}} {\phi }_{m=6} $及其相位角$ {\theta }_{{\rm{r}}}= {\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\dfrac{ {\rm{Im}} ({\text{δ}} {\phi }_{m=6}) } {{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6} ) } $的径向剖面, 灰色阴影部分表示e-BAE有限振幅区域

    Figure 7.  (a1)–(c1) The 2D poloidal mode structures of electrostatic potential $ {\text{δ}} \phi $ for cases B, D and E in Fig. 5; (a2)–(c2) the radial profiles of dominant principal poloidal harmonic of $ {\text{δ}} {\phi }_{m=6} $ and corresponding phase angle $ {\theta }_{{\rm{r}}}= {\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\dfrac{ {\rm{Im}} ({\text{δ}} {\phi }_{m=6}) } {{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6} ) } $, and the gray shaded region represents the radial domain with finite e-BAE amplitude.

    图 8  (a)固定高能量电子在磁轴处的密度$ {n}_{{\rm{h}}0, {\rm{a}}}/{n}_{{\rm{e}}0}= 0.05 $, 向左和向右移动高能量电子密度剖面; (b)对应的密度梯度特征长度剖面

    Figure 8.  (a) Fix the on-axis EE density with $ {n}_{{\rm{h}}0, {\rm{a}}}/{n}_{{\rm{e}}0}= 0.05 $ and shift the density profile left and right; (b) the corresponding gradient scale length profiles.

    图 9  (a1)—(c1)向左移动、未移动和向右移动高能量电子密度分布的e-BAE算例下静电势$ {\text{δ}} \phi $的二维模结构; (a2)—(c2)主极向分量$ {\text{δ}} {\phi }_{m=6} $及其相位角$ {\theta }_{{\rm{r}}}={\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\left({\rm{I}}{\rm{m}}\right({\text{δ}} {\phi }_{m=6})/{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6}\left)\right) $的径向剖面.

    Figure 9.  (a1)–(c1) The 2D poloidal mode structures of e-BAE electrostatic potential calculated using left-shifted, zero-shifted and right-shifted EE density profiles in Fig. 8; (a2)–(c2) the radial profiles of dominant principal poloidal harmonic of $ {\text{δ}} {\phi }_{m=6} $ and corresponding phase angle $ {\theta }_{{\rm{r}}}={\rm{a}}{\rm{r}}{\rm{c}}{\rm{t}}{\rm{a}}{\rm{n}}\left({\rm{I}}{\rm{m}}\right({\text{δ}} {\phi }_{m=6})/{\rm{R}}{\rm{e}}({\text{δ}} {\phi }_{m=6}\left)\right) $.

    图 10  (a)向左移动、未移动和向右移动高能量电子密度分布算例下$ {k}_{/ /}{\left|{\text{δ}} \phi \right|}^{2} $的径向剖面; (b)对应的体积平均值$ {\langle{{k}_{/ /}{\left|{\text{δ}} \phi \right|}^{2}}\rangle}_{V} $.

    Figure 10.  (a) Radial profiles of $ {k}_{/ /}{\left|{\text{δ}} \phi \right|}^{2} $ for cases using left-shifted, zero-shifted and right-shifted EE density distributions; (b) corresponding volume-averaged value of $ {\langle{{k}_{/ /}{\left|{\text{δ}} \phi \right|}^{2}}\rangle}_{V} $.

    Baidu
  • [1]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo T, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar

    [2]

    Chen L, Zonca F, 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Heidbrink W W 2008 Phys. Plasmas 15 055501Google Scholar

    [4]

    Heidbrink W W 2020 Phys. Plasmas 27 030901Google Scholar

    [5]

    Chen W, Ding X T, Yang Q W, Liu Y, Ji X Q, Zhang Y P, Zhou J, Yuan G L, Sun H J, Li W, Zhou Y, Huang Y, Dong J Q, Feng B B, Song X M, Shi Z B, Liu Z T, Song X Y, Li L C, Duan X R, Liu Y 2010 Phys. Rev. Lett. 105 185004Google Scholar

    [6]

    Zhao N, Bao J, Chen W, Shi T H, Wang Z X, Yan N, Liu S C, Liu H Q, Zang Q, Lin S Y, Wu X H, Chu Y Q, Wang Y M, Wang S X, Hu W H, Chu N, Li M H, Zhai X M, Jie Y X, Jiang M, Lin X D, Gao X 2021 Nucl. Fusion 61 046013Google Scholar

    [7]

    Zonca F, Buratti P, Cardinali A, Chen L, Dong J Q, Long Y X, Milovanov A V, Romanelli F, Smeulders P, Wang L, Wang Z T, Castaldo C, Cesario R, Giovannozzi E, Marinucci M, Ridolfini V Pericoli 2007 Nucl. Fusion 47 1588Google Scholar

    [8]

    Ma R R, Qiu Z Y, Li Y Y, Chen W 2020 Nucl. Fusion 60 056019Google Scholar

    [9]

    Ma R R, Qiu Z Y, Li Y Y, Chen W 2021 Nucl. Fusion 61 036014Google Scholar

    [10]

    Cheng J Y, Zhang W L, Lin Z, Holod I, Li D, Chen Y, Cao J T 2016 Phys. Plasmas 23 052504Google Scholar

    [11]

    Wang J L, Todo Y, Wang H, Wang Z-X 2020 Nucl. Fusion 60 112012Google Scholar

    [12]

    Qiu Z Y, Chen L, Zonca F, Ma R R 2020 Plasma Phys. Control. Fusion 62 105012Google Scholar

    [13]

    Connor J, Hastie R J, Taylor J B 1979 Proc. Roy. Soc. London A 365 1720

    [14]

    Lee W W, Lewandowski J L V, Hahm T S, Lin Z 2001 Phys. Plasmas 8 4435Google Scholar

    [15]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [16]

    Bao J, Zhang W L, Li D, Lin Z, Qiu Z Y, Chen W, Zhu X, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion DOI: 10.1088/1741-4326/ad0598

    [17]

    Bao J, Zhang W L, Li D, Lin Z 2020 J. Fusion Energ. 39 382Google Scholar

    [18]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [19]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [20]

    Ma R R, Zonca F, Chen L 2015 Phys. Plasmas 22 092501Google Scholar

    [21]

    Lu Z X, Wang X, Lauber Ph, Zonca F 2018 Nucl. Fusion 58 082021Google Scholar

    [22]

    Cheng C Z 1992 Phys. Rep. 211 1Google Scholar

    [23]

    Heidbrink W W, Hansen E C, Austin M E, Kramer G J, van Zeeland M A 2022 Nucl. Fusion 62 066020Google Scholar

    [24]

    Wang Z X, Lin Z, Holod I, Heidbrink W W, Tobias B, van Zeeland M, Austin M E 2013 Phys. Rev. Lett. 111 145003Google Scholar

    [25]

    Liu Y Q, Lin Z, Zhang H S, Zhang W L 2017 Nucl. Fusion 57 114001Google Scholar

    [26]

    Diamond P H, Kosuga Y, Gürcan Ö D, McDevitt C J, Hahm T S, Fedorczak N, Rice J E, Wang W X, Ku S, Kwon J M, Dif-Pradalier G, Abiteboul J, Wang L, Ko W H, Shi Y J, Ida K, Solomon W, Jhang H, Kim S S, Yi S, Ko S H, Sarazin Y, Singh R, Chang C S 2013 Nucl. Fusion 53 104019Google Scholar

    [27]

    Dong G, Wei X, Bao J, Brochard G, Lin Z, Tang W M 2021 Nucl. Fusion 61 126061Google Scholar

  • [1] Zeng Chao, Mao Yi-Yi, Wu Ji-Zhou, Yuan Tao, Dai Han-Ning, Chen Yu-Ao. Topological phase in one-dimensional momentum space lattice of ultracold atoms without chiral symmetry. Acta Physica Sinica, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [2] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [3] Ren Zhen-Zhen, Shen Wei. Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak. Acta Physica Sinica, 2023, 72(21): 215202. doi: 10.7498/aps.72.20230650
    [4] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [5] Wang En-Quan, Chen Hao, Yang Yi, Long Zheng-Wen, Hassanabadi Hassan. Generalized Klein-Gordon oscillator in Lorentz symmetry violation framework. Acta Physica Sinica, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [6] Wei Guang-Yu, Chen Ning-Fei, Qiu Zhi-Yong. Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [7] Chen Jian, Xiong Kang-Lin, Feng Jia-Gui. Adsorption of CoPc molecules on silicene surface. Acta Physica Sinica, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [8] Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211430
    [9] Adsorption of Copc Molecules on Monolayer Silicene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211607
    [10] Xia Yi-Qi, Shen Zhuang-Lin, Guo Yong-Kun. Spontaneous rotation of ratchet wheel with soft boundary in active particle bath. Acta Physica Sinica, 2019, 68(16): 161101. doi: 10.7498/aps.68.20190425
    [11] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [12] Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei. Topological zero-energy modes in time-reversal-symmetry-broken systems. Acta Physica Sinica, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [13] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [14] Xie Chen, Hu Ming-Lie, Zhang Da-Peng, Chai Lu, Wang Qing-Yue. High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell. Acta Physica Sinica, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [15] Zhang Hui, Chu Yan-Dong, Ding Wang-Cai, Li Xian-Feng. Bifurcation control of a cubic symmetry discrete chaotic system. Acta Physica Sinica, 2013, 62(4): 040202. doi: 10.7498/aps.62.040202
    [16] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [17] Shao Tao, Sun Guang-Sheng, Yan Ping, Gu Chen, Zhang Shi-Chang. Calculation on runaway process of high-energy fast electrons under nanosecond-pulse. Acta Physica Sinica, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [18] . Acta Physica Sinica, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [19] JIA CHUN-SHENG, JIANG XIAO-WEI, WANG XIAO-GUO, YANG QIU-BO. CALCULATION OF THE ENERGY EIGENVALUE OF A-QUANTUM SYSTEM IN THE FRAMEWORK OF-SUPERSYMMETRY AND SHAPE INVARIANCE. Acta Physica Sinica, 1997, 46(1): 12-19. doi: 10.7498/aps.46.12
    [20] HOU BO-YU. GAUGE INDEPENDENCE, UNITARITY AND RENORMALI-ZABILITY OF A SPONTANEOUSLY BROKEN MODEL IN THE PERTURBATION THEORY. Acta Physica Sinica, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
Metrics
  • Abstract views:  2372
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2023
  • Accepted Date:  10 October 2023
  • Available Online:  12 October 2023
  • Published Online:  05 November 2023

/

返回文章
返回
Baidu
map