-
本文从设计和运行托卡马克聚变堆需求的角度, 简要概述了托卡马克高约束运行方案和高能量粒子约束涉及的关键物理的发展现状和挑战. 过去几十年中, 托卡马克高约束模式物理研究取得了重要进展, 明确了聚变堆运行区的主要稳定性和约束的限制条件及其性能优化的主要调控手段, 发展了感应、混合和稳态等若干可能适用于未来托卡马克聚变堆的运行方案. 在反应堆阿尔法粒子加热主导的条件下, 潜在主导阿尔法粒子输运损失的阿尔芬不稳定性的线性谱特征和激发机制得到了充分的理解; 在阿尔芬不稳定性的非线性饱和、阿尔法粒子约束, 及通过加热沉积和微观湍流对等离子体约束的影响等方面开展了大量的实验和理论探索. 当前, 磁约束聚变物理已进入临近点火燃烧等离子体研究的新阶段, 面临着全新的挑战, 如: 聚变堆条件下如何实现高能量阿尔法粒子对等离子体有效自加热; 在阿尔法粒子自加热为主条件下, 如何通过调控等离子体关键参数分布维持等离子体稳定性和高约束性能, 实现聚变堆高效安全运行; 能否建立全尺度模型, 实现聚变堆复杂等离子体的长时间动力学过程的准确预测等. 这些关键问题的解决, 可为未来聚变堆的设计和运行奠定坚实的物理基础, 同时推动等离子体学科的发展.Current status and challenges of key physics related to high-confinement operational scenarios and energetic particle confinement are briefly reviewed from the perspective of design and operation of tokamak-based fusion reactors. In the past few decades, significant progress has been made in the research on high-confinement mode physics, i.e. the main stability and confinement constraints on operational window of a fusion reactor have been identified, and some control methods for adjusting plasma kinetic profiles to optimize performance have been developed. Several operational scenarios, including inductive, hybrid and steady-state etc, which are potentially applicable for future reactors, have been developed. In the conditions that fusion alpha particle self-heating is predominant and shear Alfvén wave (SAW) instabilities potentially dominate fusion alpha particle transport, the SAW linear stability properties and excitation mechanisms are understood in depth, and the SAW instabilities nonlinear saturation, alpha particle confinement, and the influence of the heating deposition and the micro-turbulence regulation on fusion profile are under extensive investigation. The magnetically confined fusion research has entered a new stage of ignition and burning plasma physics, and new challenges that are faced are addressed, including whether efficient self-heating of plasmas by fusion alpha particles can be achieved, how the plasma stability and high-confinement can be maintained through the active control of key plasma profiles under the condition of dominant alpha particle heating, and whether it is possible to establish accurate models to predict long time scale complex dynamical evolution of fusion plasmas etc. Solving these key problems will lay a solid scientific foundation for designing and operating future fusion reactors as well as promote the development of plasma science.
-
Keywords:
- magnetically confined fusion /
- tokamak /
- burning plasma physics /
- scenario
[1] Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398
Google Scholar
[2] Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217
Google Scholar
[3] Artsimovich L 1972 Nucl. Fusion 12 215
Google Scholar
[4] Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103
Google Scholar
[5] Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209
Google Scholar
[6] Hawryluk R 1998 Rev. Mod. Phys. 70 537
Google Scholar
[7] ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report
[8] EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report
[9] National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press
[10] Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report
[11] Hsu S C 2023 J. Fusion Energy 42 12
Google Scholar
[12] ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report
[13] Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press
[14] Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209
Google Scholar
[15] Strait E 1994 Phys. Plasmas 1 1415
Google Scholar
[16] ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175
Google Scholar
[17] Heidbrink W 2008 Phys. Plasmas 15 055501
Google Scholar
[18] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27
Google Scholar
[19] Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285
Google Scholar
[20] Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001
Google Scholar
[21] Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203
Google Scholar
[22] Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031
Google Scholar
[23] Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804
Google Scholar
[24] Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408
Google Scholar
[25] Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369
Google Scholar
[26] Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565
Google Scholar
[27] Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18
Google Scholar
[28] Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601
Google Scholar
[29] Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663
Google Scholar
[30] Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128
Google Scholar
[31] Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033
Google Scholar
[32] Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163
Google Scholar
[33] De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018
Google Scholar
[34] La Haye R 2006 Phys. Plasmas 13 055501
Google Scholar
[35] Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007
Google Scholar
[36] Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024
Google Scholar
[37] Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001
Google Scholar
[38] Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001
Google Scholar
[39] Zohm H 1996 Plasma Phys. Control. Fusion 38 105
Google Scholar
[40] Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549
Google Scholar
[41] Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003
Google Scholar
[42] Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001
Google Scholar
[43] Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004
Google Scholar
[44] Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012
Google Scholar
[45] Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419
Google Scholar
[46] Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48
Google Scholar
[47] Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003
Google Scholar
[48] Wan B N 2020 Chin. Phys. Lett. 37 045202
Google Scholar
[49] Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239
Google Scholar
[50] Kikuchi M 1990 Nucl. Fusion 30 265
Google Scholar
[51] Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377
Google Scholar
[52] Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807
Google Scholar
[53] Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718
Google Scholar
[54] Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421
Google Scholar
[55] Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417
Google Scholar
[56] Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110
Google Scholar
[57] Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3
[58] Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792
Google Scholar
[59] Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001
Google Scholar
[60] Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429
Google Scholar
[61] Burrell K 1997 Phys. Plasmas 4 1499
Google Scholar
[62] Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35
Google Scholar
[63] Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472
Google Scholar
[64] Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835
Google Scholar
[65] Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483
Google Scholar
[66] Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001
Google Scholar
[67] Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001
Google Scholar
[68] Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1
Google Scholar
[69] Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817
Google Scholar
[70] Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787
Google Scholar
[71] Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585
Google Scholar
[72] Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203
Google Scholar
[73] Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001
Google Scholar
[74] Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016
Google Scholar
[75] Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001
Google Scholar
[76] Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047
Google Scholar
[77] Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037
Google Scholar
[78] Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253
Google Scholar
[79] Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005
Google Scholar
[80] Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043
Google Scholar
[81] Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031
Google Scholar
[82] Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report
[83] Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012
Google Scholar
[84] Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009
Google Scholar
[85] Poli F M 2018 Phys. Plasmas 25 055602
Google Scholar
[86] Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005
Google Scholar
[87] Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180
Google Scholar
[88] Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106
Google Scholar
[89] Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028
Google Scholar
[90] Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008
Google Scholar
[91] Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264
Google Scholar
[92] Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976
Google Scholar
[93] ITER EDA 1999 Nucl. Fusion 39 2471
Google Scholar
[94] Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038
Google Scholar
[95] Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122
Google Scholar
[96] McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891
Google Scholar
[97] Chen L, Hasegawa A 1974 Phys. Fluids 17 1399
Google Scholar
[98] Grad H 1969 Phys. Today 22 34
Google Scholar
[99] Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21
Google Scholar
[100] Tsai S T, Chen L 1993 Phys. Fluids B 5 3284
Google Scholar
[101] Chen L 1999 J. Geophys. Res. Space Phys. 104 2421
Google Scholar
[102] Chen L, Zonca F 2007 Nucl. Fusion 47 S727
Google Scholar
[103] Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021
Google Scholar
[104] Fu G, Van Dam J 1989 Phys. Fluids B 1 1949
Google Scholar
[105] Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035
Google Scholar
[106] Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509
Google Scholar
[107] Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504
Google Scholar
[108] O'neil T, Malmberg J 1968 Phys. Fluids 11 1754
Google Scholar
[109] Berk H, Breizman B 1990 Phys. Fluids B 2 2235
Google Scholar
[110] Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28
Google Scholar
[111] Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002
Google Scholar
[112] Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017
Google Scholar
[113] Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013
Google Scholar
[114] Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031
Google Scholar
[115] Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503
Google Scholar
[116] Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266
Google Scholar
[117] Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024
Google Scholar
[118] Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016
Google Scholar
[119] Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001
Google Scholar
[120] Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001
Google Scholar
[121] Lang J, Fu G 2011 Phys. Plasmas 18 055902
Google Scholar
[122] Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001
Google Scholar
[123] Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776
Google Scholar
[124] Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001
Google Scholar
[125] Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007
Google Scholar
[126] Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269
Google Scholar
[127] Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032
Google Scholar
[128] Hasegawa A, Chen L 1976 Phys. Fluids 19 1924
Google Scholar
[129] Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020
Google Scholar
-
图 1 托卡马克聚变堆运行的归一化参数区($q_{95}^{-1},\beta_{\rm N} $)示意图, 其中不同曲线代表一个理想的聚变堆需要满足的不同等离子体物理限制条件的示意分布, 如最低聚变功率需求(蓝色曲线), 稳定性极限限制(红色曲线), 最低聚变增益因子需求限制(绿色曲线)和高能量粒子约束限制(紫色曲线), 以及其他一些限制条件(灰色虚线)等
Fig. 1. A schematic plot of operational window of a tokamak fusion reactor in terms of normalized parameters ($q_{95}^{-1},\beta_{\rm N}$). Different constraints from plasma physics for a fusion reactor, e.g. threshold fusion power (blue curve), stability limit (red curve), threshold fusion gain (green curve), limits from a particle confinement (purple curve), and some other constraints (gray dashed curves) etc.
图 3 ITER混合运行模式下阿尔芬连续谱和不稳定性示意图, 其中, 横坐标是归一化的径向位置, 纵坐标是频率, 虚线为安全因子分布, EPM表示高能量粒子模, TAE表示环阿尔芬本征模, EAE表示椭圆形变诱发阿尔芬本征模, NAE表示三角形变诱发阿尔芬本征模, 此处取环向模数n = 10
Fig. 3. A schematic plot of shear Alfvén wave continuous spectrum and associated instabilities of ITER hybrid scenario is presented. Here, the horizontal axis represents the normalized minor radius, and the vertical axis is the normalized frequency. The dashed curve corresponds to the q-profile, and a representative toroidal mode number n = 10 is adopted. The frequencies and mode localizations of energetic particle mode (EPM), toroidal Alfvén eigenmode (TAE), ellipticity induced Alfvén eigenmode (EAE) and non-circularity induced Alfvén eigenmode (NAE) are also given.
-
[1] Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398
Google Scholar
[2] Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217
Google Scholar
[3] Artsimovich L 1972 Nucl. Fusion 12 215
Google Scholar
[4] Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103
Google Scholar
[5] Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209
Google Scholar
[6] Hawryluk R 1998 Rev. Mod. Phys. 70 537
Google Scholar
[7] ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report
[8] EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report
[9] National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press
[10] Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report
[11] Hsu S C 2023 J. Fusion Energy 42 12
Google Scholar
[12] ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report
[13] Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press
[14] Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209
Google Scholar
[15] Strait E 1994 Phys. Plasmas 1 1415
Google Scholar
[16] ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175
Google Scholar
[17] Heidbrink W 2008 Phys. Plasmas 15 055501
Google Scholar
[18] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27
Google Scholar
[19] Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285
Google Scholar
[20] Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001
Google Scholar
[21] Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203
Google Scholar
[22] Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031
Google Scholar
[23] Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804
Google Scholar
[24] Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408
Google Scholar
[25] Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369
Google Scholar
[26] Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565
Google Scholar
[27] Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18
Google Scholar
[28] Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601
Google Scholar
[29] Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663
Google Scholar
[30] Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128
Google Scholar
[31] Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033
Google Scholar
[32] Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163
Google Scholar
[33] De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018
Google Scholar
[34] La Haye R 2006 Phys. Plasmas 13 055501
Google Scholar
[35] Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007
Google Scholar
[36] Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024
Google Scholar
[37] Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001
Google Scholar
[38] Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001
Google Scholar
[39] Zohm H 1996 Plasma Phys. Control. Fusion 38 105
Google Scholar
[40] Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549
Google Scholar
[41] Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003
Google Scholar
[42] Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001
Google Scholar
[43] Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004
Google Scholar
[44] Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012
Google Scholar
[45] Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419
Google Scholar
[46] Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48
Google Scholar
[47] Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003
Google Scholar
[48] Wan B N 2020 Chin. Phys. Lett. 37 045202
Google Scholar
[49] Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239
Google Scholar
[50] Kikuchi M 1990 Nucl. Fusion 30 265
Google Scholar
[51] Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377
Google Scholar
[52] Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807
Google Scholar
[53] Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718
Google Scholar
[54] Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421
Google Scholar
[55] Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417
Google Scholar
[56] Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110
Google Scholar
[57] Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3
[58] Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792
Google Scholar
[59] Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001
Google Scholar
[60] Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429
Google Scholar
[61] Burrell K 1997 Phys. Plasmas 4 1499
Google Scholar
[62] Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35
Google Scholar
[63] Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472
Google Scholar
[64] Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835
Google Scholar
[65] Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483
Google Scholar
[66] Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001
Google Scholar
[67] Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001
Google Scholar
[68] Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1
Google Scholar
[69] Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817
Google Scholar
[70] Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787
Google Scholar
[71] Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585
Google Scholar
[72] Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203
Google Scholar
[73] Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001
Google Scholar
[74] Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016
Google Scholar
[75] Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001
Google Scholar
[76] Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047
Google Scholar
[77] Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037
Google Scholar
[78] Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253
Google Scholar
[79] Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005
Google Scholar
[80] Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043
Google Scholar
[81] Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031
Google Scholar
[82] Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report
[83] Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012
Google Scholar
[84] Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009
Google Scholar
[85] Poli F M 2018 Phys. Plasmas 25 055602
Google Scholar
[86] Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005
Google Scholar
[87] Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180
Google Scholar
[88] Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106
Google Scholar
[89] Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028
Google Scholar
[90] Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008
Google Scholar
[91] Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264
Google Scholar
[92] Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976
Google Scholar
[93] ITER EDA 1999 Nucl. Fusion 39 2471
Google Scholar
[94] Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038
Google Scholar
[95] Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122
Google Scholar
[96] McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891
Google Scholar
[97] Chen L, Hasegawa A 1974 Phys. Fluids 17 1399
Google Scholar
[98] Grad H 1969 Phys. Today 22 34
Google Scholar
[99] Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21
Google Scholar
[100] Tsai S T, Chen L 1993 Phys. Fluids B 5 3284
Google Scholar
[101] Chen L 1999 J. Geophys. Res. Space Phys. 104 2421
Google Scholar
[102] Chen L, Zonca F 2007 Nucl. Fusion 47 S727
Google Scholar
[103] Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021
Google Scholar
[104] Fu G, Van Dam J 1989 Phys. Fluids B 1 1949
Google Scholar
[105] Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035
Google Scholar
[106] Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509
Google Scholar
[107] Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504
Google Scholar
[108] O'neil T, Malmberg J 1968 Phys. Fluids 11 1754
Google Scholar
[109] Berk H, Breizman B 1990 Phys. Fluids B 2 2235
Google Scholar
[110] Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28
Google Scholar
[111] Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002
Google Scholar
[112] Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017
Google Scholar
[113] Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013
Google Scholar
[114] Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031
Google Scholar
[115] Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503
Google Scholar
[116] Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266
Google Scholar
[117] Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024
Google Scholar
[118] Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016
Google Scholar
[119] Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001
Google Scholar
[120] Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001
Google Scholar
[121] Lang J, Fu G 2011 Phys. Plasmas 18 055902
Google Scholar
[122] Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001
Google Scholar
[123] Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776
Google Scholar
[124] Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001
Google Scholar
[125] Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007
Google Scholar
[126] Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269
Google Scholar
[127] Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032
Google Scholar
[128] Hasegawa A, Chen L 1976 Phys. Fluids 19 1924
Google Scholar
[129] Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020
Google Scholar
计量
- 文章访问数: 907
- PDF下载量: 88
- 被引次数: 0