Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

He Zhuo-Ya Yang Qi-Rong Li Zhao-Ying Mao Rui Wang Li-Wei Yan Chen-Xuan

Citation:

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

He Zhuo-Ya, Yang Qi-Rong, Li Zhao-Ying, Mao Rui, Wang Li-Wei, Yan Chen-Xuan
PDF
HTML
Get Citation
  • Molecular dynamics method is used to simulate the influence of the mesopore size and structure on the heat transport characteristics of the mixed nitrate. The Material Studio software is used to establish the mixed nitrate models of different scales and two structures, and the NaNO3-KNO3 models of different proportions that reach the eutectic state. By calculating the models and sorting out the calculation results, the phase transition of mixed nitrates on a nanometer scale is calculated and the micro-mechanism of heat transport characteristics is analyzed. The results show that the phase transition temperature of the solar salt first increases and then decreases with the increase of the nanopore size, and finally is consistent with the melting point on a macro scale. The proportion of cations has a great influence on the phase transition temperature of mixed nitrate, and the nanowire structures also change the phase transition temperature of nitrate. The bulk thermal expansion coefficient of nitrate decreases with the increase of mesoporous size, increases with the increase of NaNO3 content, and changes with the mesoporous structure. The enhancement of the interaction between ions will increase the thermal conductivity, but it will not have much effect on the specific heat capacity at a constant pressure.
      Corresponding author: Yang Qi-Rong, luyingyi125@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701102)
    [1]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092Google Scholar

    [2]

    Awad A, Navarro H, Ding Y L 2018 Renew. Energy 120 275Google Scholar

    [3]

    Chieruzzia M, Gian F. C, Miliozzi A 2017 Sol. Energy Mater. Sol. Cells 167 60Google Scholar

    [4]

    Zhang Y, Li J L, Gao L 2020 Sol. Energy Mater. Sol. Cells 216 110727Google Scholar

    [5]

    Han C J, Gu H Z, Zhang M J 2020 Sol. Energy Mater. Sol. Cells 217 110697Google Scholar

    [6]

    Deng Y, Qian T T, Guan W M 2017 J. Mater. Sci. Technol. 33 198Google Scholar

    [7]

    Rena Y, Lia P 2019 Sol. Energy Mater. Sol. Cells 200 110005Google Scholar

    [8]

    尹辉斌, 王文豪, 陈昌杰 2017 广东化工 22 33Google Scholar

    Yin H B, Wang W H, Chen C J 2017 Guangdong Chemical 22 33Google Scholar

    [9]

    李进, 王峰, 张世广, 吴玉庭 2020 华电技术 42 17Google Scholar

    Li J, Wang F, Chang S G, Wu Y T 2020 Huadian Technologies 42 17Google Scholar

    [10]

    李彦, 李鹏, 朱群志, 余杨敏 2018 硅酸盐学报 46 625Google Scholar

    Li Y, Li P, Zhu Q Z, Yu Y Y 2018 Journal of Silicate 46 625Google Scholar

    [11]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第5−138页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Thermal Transport Properties of Mesoporous Composite (Beijing: Science Press) pp5−138 (in Chinese)

    [12]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S Y, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [13]

    Bore M T, Pham H N, Switzer E E 2005 J. Phys. Chem. B 109 2873Google Scholar

    [14]

    Zhang J R, Feng Y H, Yuan H B 2015 Comput. Mater. Sci. 109 300Google Scholar

    [15]

    Wang L P, Sui J, Zhai M 2015 J. Phys. Chem. C 119 18697Google Scholar

    [16]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212−220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212−220 (in Chinese)

    [17]

    李亚琼, 梁凯彦, 王静静, 黄秀兵 2020 工程科学学报 42 1229Google Scholar

    Li Y Q, Liang K Y, Wang J J, Huang X B 2020 J. Eng. Sci. 42 1229Google Scholar

    [18]

    Min X, Fang M H, Huang Z H 2015 Sci. Rep. 5 12964Google Scholar

    [19]

    Gao J K, Tao W W, Chen D 2018 Nanomaterials 8 385Google Scholar

    [20]

    Sirota E B 2007 Macromolecules 40 1043Google Scholar

    [21]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [22]

    Asegun H, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [23]

    黄丛亮, 冯黛丽, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501Google Scholar

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501Google Scholar

    [24]

    Ni H O, Wu J, Sun Z 2019 Chem. Eng. J. 377 120029Google Scholar

    [25]

    Elena N, Anabel P, Tomos H 2017 Energy Stor. Sci. Tech. 6 688

    [26]

    吴玉庭, 王涛, 马重芳 2012 太阳能学报 33 148Google Scholar

    Wu Y T, Wang T, Ma C F 2012 J. Sol. Energy 33 148Google Scholar

    [27]

    官云许, 杨启容, 何卓亚, 王力伟 2021 功能材料 52 2153Google Scholar

    Guan Y X, Yang Q R, He Z Y, Wang L W 2021 Funct. Mater. 52 2153Google Scholar

    [28]

    李成祥, 孟庆元, 杨立军 2008 哈尔滨工业大学学报 40 705Google Scholar

    Li C X, Meng Q Y, Yang L J 2008 Journal of Harbin Institute of Technology 40 705Google Scholar

    [29]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Transf. 103 417Google Scholar

    [30]

    宫薛菲, 杨启容, 姚尔人, 刘亭 2020 功能材料 51 1214Google Scholar

    Gong X F, Yang Q R, Yao E R, L T 2020 Funct. Mater. 51 1214Google Scholar

    [31]

    Jayaraman S, Thompson A P, von Lilienfeld O Anatole 2010 Ind. Eng. Chem. Res. 49 559Google Scholar

    [32]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energy Mater. Sol. Cells 200 109897Google Scholar

    [33]

    倪海鸥, 孙泽, 路贵民 2017 储能科学与技术 6 669Google Scholar

    Ni H O, Sun Z, Lu G M 2017 Energy Stor. Mater. 6 669Google Scholar

    [34]

    车德勇, 沈辉, 蒋文强 2015 无机盐工业 47 30

    Che D Y, Shen H, Jiang W Q 2015 Inorganic salt industry 47 30

    [35]

    Couchman P R, Jesser W A 1977 Nature 269 481Google Scholar

    [36]

    David T B, Lereah Y, Deutscher G 1995 Philos. Mag. A 71 1135Google Scholar

    [37]

    Reiss H, Wilson I B 1948 J. Colloid Sci. 3 551Google Scholar

    [38]

    王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568Google Scholar

    Wang H L, Wang X X, Liang H Y 2005 J. Metal Sci. 41 568Google Scholar

    [39]

    姜小宝 2013 博士学位论文 (长春: 吉林大学)

    Jiang X B 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [40]

    Sememchenko V K 1961 Surface Phenomena in Metals and Alloys (Oxford Pergamon) pp2−81

    [41]

    温元凯, 李振民 1978 科学通报 23 225Google Scholar

    Wen Y K 1978 Chin. Sci. Bull. 23 225Google Scholar

    [42]

    Lonappan M 1955 Proceedings of the Indian Academy of Sciences-Section A 41 239Google Scholar

    [43]

    张景胤 2017 硕士学位论文 (北京: 华北电力大学)

    Zhang J Y 2017 M. S. Thesis (Beijing: North China Electric Power University) (in Chinese)

    [44]

    Kenisarin M 2010 Renew. Sust. Energ. Rev. 14 955Google Scholar

    [45]

    李杨 2018 硕士学位论文 (郑州: 郑州大学)

    Li Y 2018 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [46]

    王长宝 2013 硕士学位论文 (北京: 北京工业大学)

    Wang C B 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

  • 图 1  NaNO3和KNO3的单晶胞

    Figure 1.  NaNO3 and KNO3 single crystal cells.

    图 2  混合硝酸盐模型 (a) w (NaNO3)∶w (KNO3) = 4∶6混合硝酸盐; (b) w (NaNO3) ∶w (KNO3) = 5∶5混合硝酸盐; (c) w (NaNO3) ∶w (KNO3) = 9∶1混合硝酸盐; (d) w (NaNO3)∶w (KNO3) = 6∶4太阳盐; (e) w(NaNO3)∶w (KNO3) = 6∶4异结构太阳盐

    Figure 2.  Mixed nitrate model: (a) w (NaNO3)∶w (KNO3) = 4∶6 mixed nitrate; (b) w (NaNO3)∶w (KNO3) = 5∶5 mixed nitrate; (c) w (NaNO3)∶w (KNO3) = 9∶1 mixed nitrate; (d) w (NaNO3)∶w (KNO3) = 6∶4 solar salt; (e) w (NaNO3)∶w (KNO3) = 6∶4 heterogeneous solar salts.

    图 3  不同温度下离子之间的径向分布函数 (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N)

    Figure 3.  Radial distribution function of ions at different temperatures: (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N).

    图 4  不同尺度下离子之间的径向分布函数和相互作用能 (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d)相互作用能

    Figure 4.  Radial distribution function and interaction energy of ions at different scales: (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d) interaction energy.

    图 5  不同比例下离子之间的径向分布函数和相互作用能(w(NaNO3):w(KNO3)) (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N); (d)相互作用能

    Figure 5.  Radial distribution function and interaction energy of ions at different proportions (w(NaNO3):w(KNO3)): (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N); (d) interaction energy.

    图 6  两种结构下离子之间的径向分布函数和相互作用能 (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d)相互作用能

    Figure 6.  Radial distribution function and interaction energy of ions at two structures: (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d) interaction energy.

    图 7  离子数为2760的太阳盐的均方位移和自扩散系数 (a)均方位移; (b)自扩散系数

    Figure 7.  Mean square displacement and self diffusion coefficient of solar salt with ion number of 2760: (a) Mean square displacement; (b) self diffusion coefficient.

    图 8  不同尺度下太阳盐的体热膨胀系数和体积 (a)体热膨胀系数; (b)体积

    Figure 8.  Thermal expansion coefficient and volume of solar salts at different scales: (a) Thermal expansion coefficient; (b) volume.

    图 9  不同比例下太阳盐的体热膨胀系数和体积(w(Na+)∶w(K+)) (a)体热膨胀系数; (b)体积

    Figure 9.  Thermal expansion coefficient and volume of solar salts at different proportions (w(Na+)∶w(K+)): (a) Thermal expansion coefficient; (b) volume.

    图 10  两种结构下太阳盐的体热膨胀系数和体积 (a)体热膨胀系数; (b)体积

    Figure 10.  Thermal expansion coefficient and volume of solar salts at two structures: (a) Thermal expansion coefficient; (b) volume.

    图 11  不同尺度下太阳盐导热率

    Figure 11.  Thermal conductivity of solar salts at different scales.

    图 12  不同比例下混合硝酸盐导热率

    Figure 12.  Thermal conductivity of mixed nitrates at different ratios.

    图 13  不同尺度下太阳盐定压比热容

    Figure 13.  Fixed-pressure specific heat capacity of solar salts at different scales.

    图 14  不同比例(w(Na+)∶w(K+))下混合硝酸盐定压比热容

    Figure 14.  Fixed-pressure specific heat capacity of mixed nitrate at different ratios (w(Na+)∶w(K+)).

    表 1  太阳盐($w({\rm NaNO_3}): w({\rm KNO_3}) = 6:4$)中NaNO3和KNO3的离子数

    Table 1.  Ion numbers of NaNO3 and KNO3 in solar salts ($w({\rm NaNO_3}): w({\rm KNO_3}) = 6: 4$)

    离子数种类Model size/nm
    Na+K+NO2–
    4606032922765
    920120641845525
    1380180962768288
    184024012836811048
    2300300160460138010
    2760360192552165610
    DownLoad: CSV

    表 2  混合硝酸盐中NaNO3和KNO3的离子数(总离子数为460)

    Table 2.  Ion numbers of NaNO3 and KNO3 in mixed nitrate (total number of ions is 460).

    $w({\rm NaNO_3}): w({\rm KNO_3})$种类Model
    size/nm
    Na+K+NO2–
    4∶64151922765
    5∶54943922765
    6∶46032922765
    9∶1848922765
    DownLoad: CSV

    表 3  不同尺度下太阳盐的相变温度

    Table 3.  Phase transition temperature of solar salts at different scales.

    离子数
    46092013801840230027605520
    温度/K493493503518508492493
    DownLoad: CSV

    表 4  不同比例的混合硝酸盐的相变温度

    Table 4.  Phase transition temperature of mixed nitrates at different proportions

    w(NaNO3)∶w(KNO3)
    4∶65∶56∶49∶1
    温度/K493488493548
    DownLoad: CSV

    表 5  纳米线结构太阳盐的相变温度

    Table 5.  Phase transition temperature of nanostructured solar salts.

    离子数
    460920
    温度/K528548
    DownLoad: CSV

    表 6  两种结构下太阳盐导热率

    Table 6.  Thermal conductivity of solar salts at two structures.

    离子数
    460-
    纳米孔
    920-
    纳米孔
    460-
    纳米线
    920-
    纳米线
    导热率/(W·m–1·K–1)0.460.630.991.98
    DownLoad: CSV
    Baidu
  • [1]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092Google Scholar

    [2]

    Awad A, Navarro H, Ding Y L 2018 Renew. Energy 120 275Google Scholar

    [3]

    Chieruzzia M, Gian F. C, Miliozzi A 2017 Sol. Energy Mater. Sol. Cells 167 60Google Scholar

    [4]

    Zhang Y, Li J L, Gao L 2020 Sol. Energy Mater. Sol. Cells 216 110727Google Scholar

    [5]

    Han C J, Gu H Z, Zhang M J 2020 Sol. Energy Mater. Sol. Cells 217 110697Google Scholar

    [6]

    Deng Y, Qian T T, Guan W M 2017 J. Mater. Sci. Technol. 33 198Google Scholar

    [7]

    Rena Y, Lia P 2019 Sol. Energy Mater. Sol. Cells 200 110005Google Scholar

    [8]

    尹辉斌, 王文豪, 陈昌杰 2017 广东化工 22 33Google Scholar

    Yin H B, Wang W H, Chen C J 2017 Guangdong Chemical 22 33Google Scholar

    [9]

    李进, 王峰, 张世广, 吴玉庭 2020 华电技术 42 17Google Scholar

    Li J, Wang F, Chang S G, Wu Y T 2020 Huadian Technologies 42 17Google Scholar

    [10]

    李彦, 李鹏, 朱群志, 余杨敏 2018 硅酸盐学报 46 625Google Scholar

    Li Y, Li P, Zhu Q Z, Yu Y Y 2018 Journal of Silicate 46 625Google Scholar

    [11]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第5−138页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Thermal Transport Properties of Mesoporous Composite (Beijing: Science Press) pp5−138 (in Chinese)

    [12]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S Y, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [13]

    Bore M T, Pham H N, Switzer E E 2005 J. Phys. Chem. B 109 2873Google Scholar

    [14]

    Zhang J R, Feng Y H, Yuan H B 2015 Comput. Mater. Sci. 109 300Google Scholar

    [15]

    Wang L P, Sui J, Zhai M 2015 J. Phys. Chem. C 119 18697Google Scholar

    [16]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212−220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212−220 (in Chinese)

    [17]

    李亚琼, 梁凯彦, 王静静, 黄秀兵 2020 工程科学学报 42 1229Google Scholar

    Li Y Q, Liang K Y, Wang J J, Huang X B 2020 J. Eng. Sci. 42 1229Google Scholar

    [18]

    Min X, Fang M H, Huang Z H 2015 Sci. Rep. 5 12964Google Scholar

    [19]

    Gao J K, Tao W W, Chen D 2018 Nanomaterials 8 385Google Scholar

    [20]

    Sirota E B 2007 Macromolecules 40 1043Google Scholar

    [21]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [22]

    Asegun H, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [23]

    黄丛亮, 冯黛丽, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501Google Scholar

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501Google Scholar

    [24]

    Ni H O, Wu J, Sun Z 2019 Chem. Eng. J. 377 120029Google Scholar

    [25]

    Elena N, Anabel P, Tomos H 2017 Energy Stor. Sci. Tech. 6 688

    [26]

    吴玉庭, 王涛, 马重芳 2012 太阳能学报 33 148Google Scholar

    Wu Y T, Wang T, Ma C F 2012 J. Sol. Energy 33 148Google Scholar

    [27]

    官云许, 杨启容, 何卓亚, 王力伟 2021 功能材料 52 2153Google Scholar

    Guan Y X, Yang Q R, He Z Y, Wang L W 2021 Funct. Mater. 52 2153Google Scholar

    [28]

    李成祥, 孟庆元, 杨立军 2008 哈尔滨工业大学学报 40 705Google Scholar

    Li C X, Meng Q Y, Yang L J 2008 Journal of Harbin Institute of Technology 40 705Google Scholar

    [29]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Transf. 103 417Google Scholar

    [30]

    宫薛菲, 杨启容, 姚尔人, 刘亭 2020 功能材料 51 1214Google Scholar

    Gong X F, Yang Q R, Yao E R, L T 2020 Funct. Mater. 51 1214Google Scholar

    [31]

    Jayaraman S, Thompson A P, von Lilienfeld O Anatole 2010 Ind. Eng. Chem. Res. 49 559Google Scholar

    [32]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energy Mater. Sol. Cells 200 109897Google Scholar

    [33]

    倪海鸥, 孙泽, 路贵民 2017 储能科学与技术 6 669Google Scholar

    Ni H O, Sun Z, Lu G M 2017 Energy Stor. Mater. 6 669Google Scholar

    [34]

    车德勇, 沈辉, 蒋文强 2015 无机盐工业 47 30

    Che D Y, Shen H, Jiang W Q 2015 Inorganic salt industry 47 30

    [35]

    Couchman P R, Jesser W A 1977 Nature 269 481Google Scholar

    [36]

    David T B, Lereah Y, Deutscher G 1995 Philos. Mag. A 71 1135Google Scholar

    [37]

    Reiss H, Wilson I B 1948 J. Colloid Sci. 3 551Google Scholar

    [38]

    王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568Google Scholar

    Wang H L, Wang X X, Liang H Y 2005 J. Metal Sci. 41 568Google Scholar

    [39]

    姜小宝 2013 博士学位论文 (长春: 吉林大学)

    Jiang X B 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [40]

    Sememchenko V K 1961 Surface Phenomena in Metals and Alloys (Oxford Pergamon) pp2−81

    [41]

    温元凯, 李振民 1978 科学通报 23 225Google Scholar

    Wen Y K 1978 Chin. Sci. Bull. 23 225Google Scholar

    [42]

    Lonappan M 1955 Proceedings of the Indian Academy of Sciences-Section A 41 239Google Scholar

    [43]

    张景胤 2017 硕士学位论文 (北京: 华北电力大学)

    Zhang J Y 2017 M. S. Thesis (Beijing: North China Electric Power University) (in Chinese)

    [44]

    Kenisarin M 2010 Renew. Sust. Energ. Rev. 14 955Google Scholar

    [45]

    李杨 2018 硕士学位论文 (郑州: 郑州大学)

    Li Y 2018 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [46]

    王长宝 2013 硕士学位论文 (北京: 北京工业大学)

    Wang C B 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

  • [1] Mao Rui, Yang Qi-Rong, Li Zhao-Ying, Yan Chen-Xuan, He Zhuo-Ya. Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate. Acta Physica Sinica, 2022, 71(11): 110503. doi: 10.7498/aps.71.20212388
    [2] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [3] Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties. Acta Physica Sinica, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming. Theoretical study on the structure and stability of neutral and cationic butanone clusters. Acta Physica Sinica, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [6] Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin. Glass transition in binary mixture of colloidal ellipsoids and spheres. Acta Physica Sinica, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [7] Tao Qiang, Ma Shuai-Ling, Cui Tian, Zhu Pin-Wen. Structures and properties of functional transition metal borides. Acta Physica Sinica, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [8] Sun Jing-Yang, Wang Dong-Ming, Lü Ye-Gang, Wang Miao, Wang Yi-Man, Shen Xiang, Wang Guo-Xiang, Dai Shi-Xun. Structure and phase change in Cu-Ge3Sb2Te5 films for use in phase change random access memory. Acta Physica Sinica, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [9] Liu Feng-Jin, Chen Shui-Yuan, Huang Zhi-Gao. Effects of Ba-doping and process conditions on the structure and magnetic properties of BiFeO3 ceramics. Acta Physica Sinica, 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [10] Lan Lei-Lei, Hu Xin-Yu, Gu Guang-Rui, Jiang Li-Na, Wu Bao-Jia. Study on preparation and characteristics of Fe- and Mn-doped AlN thin films. Acta Physica Sinica, 2013, 62(21): 217504. doi: 10.7498/aps.62.217504
    [11] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] Xiao Xia-Jie, Han Xiao-Qin, Liu Yu-Fang. Structure and potential energy functionof XF2(X=B,N) molecular ground state. Acta Physica Sinica, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [13] Wang Wei-Na, Fang Qing-Qing, Zhou Jun, Wang Sheng-Nan, Yan Fang-Liang, Liu Yan-Mei, Li Yan, Lü Qing-Rong. Influence of fabrication technique on structure and photoluminescence of Zn1-xMgxO thin films. Acta Physica Sinica, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [14] Deng Shu-Kang, Tang Xin-Feng, Yang Pei-Zhi, Yan Yong-Gao. Structure and thermoelectric properties of p-type Ge-based Ba8Ga16CdxGe30-x type-Ⅰ clathrates doping by Cd. Acta Physica Sinica, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [15] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [16] Liu Yan-Yan, Bauer-Grosse E., Zhang Qing-Yu. Morphology and structure of the diamond film synthesized from carbon monoxide gas. Acta Physica Sinica, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [17] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [18] Peng Hong-Yan, Zhou Chuan-Sheng, Zhao Li-Xin, Jin Zeng-Sun, Zhang Bing, Chen Bao-Ling, Chen Yu-Qiang, Li Min-Jun. Effect of the laser power density on the properties and structures of the diamond-like carbon films deposited by pulsed laser ablation of graphite. Acta Physica Sinica, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [19] Fang Qing-Qing, Jiao Yong-Fang, Li Rui, Wang Jin-Zhi, Cheng Hui. Studies on structure and magnetic properties of uniaxial M-type SrFe12-x 12-xCrxxO1919 hexaferrite nano-crystalline. Acta Physica Sinica, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [20] Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
Metrics
  • Abstract views:  4277
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2021
  • Accepted Date:  14 September 2021
  • Available Online:  18 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回
Baidu
map