-
采用磁控溅射法制备了不同Cu含量的Cu-Ge3Sb2Te5薄膜, 原位测试了薄膜电阻与温度的关系, 并利用X射线衍射仪、透射电镜、透过和拉曼光谱仪分别研究了 Cu-Ge3Sb2Te5薄膜的晶体结构、微结构、禁带宽度及成键情况. 结果表明, Cu-Ge3Sb2Te5薄膜的结晶温度和结晶活化能随着Cu含量的增加而增大, Cu的加入有效改善Ge3Sb2Te5薄膜的热稳定性和10年数据保持力. 随着Cu含量的增加, 非晶态Cu-Ge3Sb2Te5薄膜的禁带宽度逐渐减小. 同时, 拉曼峰从129 cm-1向127 cm-1处移动, 这是由于Cu–Te极性键振动增强的缘故. Cu-Ge3Sb2Te5结晶为均匀、相互嵌套的六方Cu2Te和Ge2Sb2Te5相.The Cu-Ge3Sb2Te5 thin films with different Cu contents were prepared by magnetron sputtering method. The dependence of film resistance on temperature is measured in situ by using the four-point probe heating platform. The crystal structure, microstructure, optical gap, and bond states of the Cu-Ge3Sb2Te5 films are investigated by X-ray diffraction, transmission electron microscopy, transmission and Raman spectra, respectively. It is shown that the crystallization temperature and activation energy of crystallization increase with increasing Cu content, suggesting the improvement in thermal stability and data retention ability, while optical gap decreases with increasing Cu concentration. It is observed that the Raman peak shifts from 129 cm-1 to 127 cm-1, which may be ascribed to the vibration of polar Cu–Te bonds. The Cu-Ge3Sb2Te5 crystallizes into the embedded Cu2Te and Ge2Sb2Te5 phases with evenly grown grains.
-
Keywords:
- thin film /
- phase change /
- structure
[1] Perniola L, Sousa V, Fantini A, Arbaoui E, Bastard A, Armand M, Fargeix A, Jahan C, Nodin J F, Persico A, Blachier D, Toffoli A, Loubriat S, Gourvest E, Beneventi G B, Feldis H, Maitrejean S, Lhostis S, Roule A, Cueto O, Reimbold G, Poupinet L, Billon T, De Salvo B, Bensahel D, Mazoyer P, Annunziata R, Zuliani P, Boulanger F 2010 IEEE Electron Device Lett. 31 488
[2] Fang L W W, Zhao R, Li M, Lim K G, Shi L, Chong T C, Yeo Y C 2010 J. Appl. Phys. 107 104506
[3] Seo J H, Song K H, Lee H Y 2010 J. Appl. Phys. 108 064515
[4] Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906
[5] Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910
[6] Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104
[7] Gambino J, Fen C, He J 2009 Custom Integrated Circuits Conference 2009. CICC'09. IEEE 141
[8] Ding K, Ren K, Rao F, Song Z, Wu L, Liu B, Feng S 2014 Mater. Lett. 125 143
[9] Zheng J F, Reed J, Schell C, Czubatyj W, Sandoval R, Fournier J, Li W, Hunks W, Dennison C, Hudgens S, Lowrey T 2010 IEEE Electron Device Lett. 31 999
[10] Kissinger H E 1957 Anal. Chem. 29 1702
[11] Lu Y, Song S, Song Z, Liu B 2011 J. Appl. Phys. 109 064503
[12] Li J, Wang G, Chen Y, Shen X, Nie Q, Lu Y, Dai S, Xu T 2014 Chin. Phys. B 23 87301
[13] Lu Y, Zhang Z, Song S, Shen X, Wang G, Cheng L, Dai S, Song Z 2013 Appl. Phys. Lett. 102 241907
[14] Adler D, Henisch H K, Mott S N 1978 Reviews of Modern Physics 50 209
[15] Rao F, Song Z T, Cheng Y, Xia M J, Ren K, Wu L C, Liu B, Feng S L 2012 Acta Materialia 60 323
[16] Yamada N, Matsunaga T 2000 J. Appl. Phys. 88 7020
[17] De Bastiani R, Carria E, Gibilisco S, Mio A, Bongiorno C, Piccinelli F, Bettinelli M, Pennisi A R, Grimaldi M G, Rimini E 2010 J. Appl. Phys. 107 113521
[18] Prabukanthan P, Dhanasekaran R 2008 Mater. Res. Bull. 43 1996
[19] Wu Y, Liu K, Li D, Guo Y, Pan S 2011 Appl. Surf. Sci. 258 1619
-
[1] Perniola L, Sousa V, Fantini A, Arbaoui E, Bastard A, Armand M, Fargeix A, Jahan C, Nodin J F, Persico A, Blachier D, Toffoli A, Loubriat S, Gourvest E, Beneventi G B, Feldis H, Maitrejean S, Lhostis S, Roule A, Cueto O, Reimbold G, Poupinet L, Billon T, De Salvo B, Bensahel D, Mazoyer P, Annunziata R, Zuliani P, Boulanger F 2010 IEEE Electron Device Lett. 31 488
[2] Fang L W W, Zhao R, Li M, Lim K G, Shi L, Chong T C, Yeo Y C 2010 J. Appl. Phys. 107 104506
[3] Seo J H, Song K H, Lee H Y 2010 J. Appl. Phys. 108 064515
[4] Wang G X, Nie Q H, Shen X, Wang R P, Wu L C, Fu J, Xu T F, Dai S X 2012 Appl. Phys. Lett. 101 051906
[5] Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J, Li G H 2011 Appl. Phys. Lett. 98 231910
[6] Zhou X, Wu L, Song Z, Rao F, Zhu M, Peng C, Yao D, Song S, Liu B, Feng S 2012 Appl. Phys. Lett. 101 142104
[7] Gambino J, Fen C, He J 2009 Custom Integrated Circuits Conference 2009. CICC'09. IEEE 141
[8] Ding K, Ren K, Rao F, Song Z, Wu L, Liu B, Feng S 2014 Mater. Lett. 125 143
[9] Zheng J F, Reed J, Schell C, Czubatyj W, Sandoval R, Fournier J, Li W, Hunks W, Dennison C, Hudgens S, Lowrey T 2010 IEEE Electron Device Lett. 31 999
[10] Kissinger H E 1957 Anal. Chem. 29 1702
[11] Lu Y, Song S, Song Z, Liu B 2011 J. Appl. Phys. 109 064503
[12] Li J, Wang G, Chen Y, Shen X, Nie Q, Lu Y, Dai S, Xu T 2014 Chin. Phys. B 23 87301
[13] Lu Y, Zhang Z, Song S, Shen X, Wang G, Cheng L, Dai S, Song Z 2013 Appl. Phys. Lett. 102 241907
[14] Adler D, Henisch H K, Mott S N 1978 Reviews of Modern Physics 50 209
[15] Rao F, Song Z T, Cheng Y, Xia M J, Ren K, Wu L C, Liu B, Feng S L 2012 Acta Materialia 60 323
[16] Yamada N, Matsunaga T 2000 J. Appl. Phys. 88 7020
[17] De Bastiani R, Carria E, Gibilisco S, Mio A, Bongiorno C, Piccinelli F, Bettinelli M, Pennisi A R, Grimaldi M G, Rimini E 2010 J. Appl. Phys. 107 113521
[18] Prabukanthan P, Dhanasekaran R 2008 Mater. Res. Bull. 43 1996
[19] Wu Y, Liu K, Li D, Guo Y, Pan S 2011 Appl. Surf. Sci. 258 1619
计量
- 文章访问数: 6021
- PDF下载量: 204
- 被引次数: 0