搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔内太阳盐凝固特性的尺度效应和结构效应分析

毛蕊 杨启容 李昭莹 闫晨宣 何卓亚

引用本文:
Citation:

介孔内太阳盐凝固特性的尺度效应和结构效应分析

毛蕊, 杨启容, 李昭莹, 闫晨宣, 何卓亚

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

Mao Rui, Yang Qi-Rong, Li Zhao-Ying, Yan Chen-Xuan, He Zhuo-Ya
PDF
HTML
导出引用
  • 采用分子动力学方法模拟介孔尺度和结构对太阳盐凝固特性的影响. 使用Material Studio软件分别建立不同尺度、两种结构的混合硝酸盐模型, 模型通过Lammps进行模拟计算, 总结凝固点、过冷度、相变潜热随尺度和结构的变化规律, 利用径向分布函数、势能-温度曲线、吉布斯自由能等表征参量对介孔内太阳盐凝固特性的微观机理进行分析. 结果表明, 太阳盐的凝固点随着纳米孔尺度的增大先增大后减小最终趋于稳定, 相同尺度下纳米线结构的凝固点高于纳米颗粒的凝固点. 太阳盐的过冷度整体呈现随介孔尺度增大而减小的规律, 但有反常增加现象. 两种不同结构下, 太阳盐凝固焓随着尺度增大均逐渐增大, 且纳米线结构较纳米粒子结构在相同尺度下提高了30%—37%.
    The effects of mesoporous size and structure on the solidification characteristics of solar salt are simulated by molecular dynamics (MD). The mixed nitrate model with different scales and two structures is established by using Material Studio software, and the model is applied to the Lammps software package for simulation calculation. The changes of freezing point, supercooling, and phase transformation latent heat are summarized. The micro mechanism of solidification characteristics of nano solar salt is analyzed by radial distribution function, potential energy temperature curve and Gibbs free energy theory. The results show that the freezing point of solar salt first increases and then decreases with the increase of nanopore scale. The nanowire structure will also increase the phase transition temperature on the same scale, and the phase transition points of the two eventually tend to be stable with the increase of scale. The supercooling of solar salt decreases with the increase of mesoporous scale, but there is an abnormal increase. Under the two different structures, the solidification enthalpy gradually decreases with the increase of scale, and the phase transition latent heat of nanowire solar salt is 30%–37% higher than that of nanoparticle structure on the same scale.
      通信作者: 杨启容, luyingyi125@163.com
    • 基金项目: 青岛大学青年卓越科研启动经费(批准号: QDPYHT-5-065)资助的课题
      Corresponding author: Yang Qi-Rong, luyingyi125@163.com
    • Funds: Project supported by Start-up Funding for Youth Research Excellence of Qingdao University, China (Grant No. QDPYHT-5-065).
    [1]

    Jiang Z, Leng G, Ye F, Ge Z, Liu C, Wang L 2015 Energy Convers. Manage. 106 165Google Scholar

    [2]

    Alehosseini E, Jafari S. M. 2019 Trends Food Sci. Tech. 91 116Google Scholar

    [3]

    Umair M M, Zhang Y, Zhang S, Tang B 2019 Applied Energy 235 846Google Scholar

    [4]

    Chen X, Gao H, Yang M, Xing L, Dong W, Li A 2019 Energy Storage Mater. 18 349Google Scholar

    [5]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第110—113页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Heat Transport Properties of Mesoporous Composites (Beijing: Science Press) pp110–113 (in Chinese)

    [6]

    Chen X, Tang Z, Chang Y, Gao H, Lv J 2020 iScience 23 101606Google Scholar

    [7]

    Qian T T, Li J H, Xin M, Fan B 2018 ACS Sustain. Chem. Eng. 6 897Google Scholar

    [8]

    Xiao, C, Hg A, Lx A, Wd A, Al A, Pc B 2019 Energy Storage Mater. 18 280Google Scholar

    [9]

    Huang, X, Liu Z, Xia W, Zou R, Han R P S 2014 J. Mater. Chem. A 3 1935Google Scholar

    [10]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S W, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [11]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [12]

    Lewis L J, Jensen P, Barrat J L 1997 Mrs Proceedings 56.4 2248-2257Google Scholar

    [13]

    毋志民, 王新强 2006 原子与分子 23 167Google Scholar

    Wu Z M, Wang X Q 2006 Journal of Atomic and Molecular Physics 23 167Google Scholar

    [14]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518Google Scholar

    [15]

    Kang J W, Hwang H J 2003 Comp. Mater. Sci. 27 305Google Scholar

    [16]

    Wen Y H, Zhu Z Z, Zhu R, Shao G F 2005 Physica E: Low-Dimensional Systems and Nanostructures 25 47

    [17]

    Goitandia A M, Beobide G, Aranzabe E, Aranzabe A 2015 Sol. Energ. Mat. Sol. C. 134 318Google Scholar

    [18]

    Nakano K, Masuda Y, Daiguji H 2015 J. Phys. Chem. C 119 4769Google Scholar

    [19]

    Zou T, X Liang, Wang S, Gao X, Fang, Y 2020 Micropor. Mesopor. Mater. 305 110403Google Scholar

    [20]

    Zhang P, Xiao X, Ma Z W 2016 Appl. Energy 165 472Google Scholar

    [21]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212—220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212–220 (in Chinese)

    [22]

    何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣 2022 71 030503Google Scholar

    He Z Y, Yang Q R, Li Z Y, Mao R, Wang L W, Yan C X 2022 Acta Phys. Sin. 71 030503Google Scholar

    [23]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energ. Mater. Sol. C 200 109897

    [24]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 96Google Scholar

    [25]

    吴晨光, 李蓓 2022 复合材料学报 32 1Google Scholar

    [26]

    Karasawa N, Goddard WA 1992 Macromolecules 25 7268Google Scholar

    [27]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Tran. 103 417Google Scholar

    [28]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 385Google Scholar

    [29]

    Zhang C, Chen Y, Yang L, Shi M 2011 Int. J. Heat Mass Transfer 54 4770Google Scholar

    [30]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Advances 6 54763Google Scholar

    [31]

    李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞 2022 71 016101Google Scholar

    Li C, Hou Z Y, Niu Y, Gao Q H, Wang Z, Wang J G, Zou P F 2022 Acta Phys. Sin 71 016101Google Scholar

    [32]

    Nicole P, Thomas B, Claudia M, Markus E, Antje W 2015 Beilstein J. Nanotech. 6 1487Google Scholar

    [33]

    Danneman D M, Johansen J B, Furbo S 2016 Sol. Energ. Mater. Sol. C. 145 287Google Scholar

    [34]

    Kibria M A, Anisur M R, Mahfuz M H, Saidur R, Metselaar I 2015 Energy Convers. Manage. 95 69Google Scholar

    [35]

    Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M 2015 Energy 87 654

    [36]

    Song Z, Deng Y, Li J, Nian H 2018 Mater. Res. Bull. 102 203Google Scholar

    [37]

    Cao F, Bao Y 2014 Appl. Energy 113 1512Google Scholar

    [38]

    Fang G, Hui L, Fan Y, Xu L, Wu S 2009 Chem. Eng. J. 153 217Google Scholar

    [39]

    Wei L L, Kenichi, Ohsasa 2010 ISIJ Int. 50 1265Google Scholar

    [40]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

    [41]

    Wang W, Zhong Y, Li D, Wang P, Cai Y, Duan Z 2015 J. Electr. Mater. 44 4920Google Scholar

    [42]

    Saranprabhu M K, Rajan K S 2019 Renew. Energy 141 451Google Scholar

    [43]

    Pan K, Li Y, Zhao Q, Zhang S 2018 JOM 71 737Google Scholar

    [44]

    Li Y 2018 Ph. D. Dissertation (Zhengzhou: Zhengzhou University) (in Chinese) [李扬 2018 博士学位论文 (郑州: 郑州大学)]

    [45]

    Eryürek M, Güven 2007 Physica A:Stat. Mech. Appl. 377 514Google Scholar

  • 图 1  NaNO3和KNO3

    Fig. 1.  NaNO3 and KNO3

    图 2  太阳盐模型 (a) 460; (b) 920; (c) 1380; (d) 1840; (e) 2300; (f) 2760; (g) 460 (纳米线); (h) 920 (纳米线)

    Fig. 2.  Solar salt model: (a) 460; (b) 920; (c) 1380; (d) 1840; (e) 2300; (f) 2760; (g) 460 molecular number (nanowire); (h) 920 molecular number (nanowire).

    图 3  离子数为2760的太阳盐的均方位移和自扩散系数 (a) 均方位移; (b) 自扩散系数

    Fig. 3.  Mean square displacement and self diffusion coefficient of solar salt with ion number 2760: (a) Mean square displacement; (b) self diffusion coefficient.

    图 4  太阳盐相变潜热

    Fig. 4.  Latent heat of solar salt phase transition

    图 5  不同尺度下K+-Na+径向分布函数 (a) 460; (b) 1380; (c) 1840; (d) 2300

    Fig. 5.  Radial distribution function of K+-Na+ at different temperatures: (a) 460; (b) 1380; (c) 1840; (d) 2300

    图 6  460分子数下不同冷却速率K+-Na+径向分布函数 (a) 0.1 K/ps; (b) 0.5 K/ps

    Fig. 6.  Radial distribution function of K+-Na+ at different cooling rates at 460 molecular numbers: (a) 0.1 K/ps; (b) 0.5 K/ps

    图 7  1380分子数下不同冷却速率K+-Na+径向分布函数 (a) 0.1 K/ps; (b) 0.5 K/ps

    Fig. 7.  Radial distribution function of K+-Na+ at different cooling rates at 1380 molecular numbers: (a) 0.1 K/ps; (b) 0.5 K/ps

    图 8  不同尺度下纳米线太阳盐K+-Na+径向分布函数 (a) 460; (b) 920

    Fig. 8.  Radial distribution function of nanowire solar salt at different scales of K+-Na+: (a) 460; (b) 920

    图 9  太阳盐降温曲线 (a) $-H/(R_{\rm g}T^2)$曲线; (b) 吉布斯自由能随温度变化曲线

    Fig. 9.  Cooling curve of solar salt: (a) $ -H/(R_{\rm g}T^2) $ curve; (b) Gibbs free energy versus temperature

    图 10  势能-温度曲线 (a) 460分子数升降温曲线; (b) 不同尺度纳米粒子降温曲线; (c) 不同尺度纳米线降温曲线; (d) 不同结构降温曲线

    Fig. 10.  Potential energy-temperature curve: (a) 460 molecular number rise and drop temperature curve; (b) cooling curves of nanoparticles with different scales; (c) cooling curves of nanowires with different scales; (d) cooling curves of different structures

    表 1  太阳盐(w (NaNO3)∶w (KNO3) = 6∶4)中NaNO3和KNO3的离子数[22]

    Table 1.  Ion numbers of NaNO3 and KNO3 in solar salts (w (NaNO3) : w (KNO3) = 6∶4)[22]

    离子数种类尺度/nm
    Na+K+NO2–
    4606032922765
    920120641845526—7
    1380180962768287—8
    184024012836811048
    230030016046013809—10
    2760360192552165610
    下载: 导出CSV

    表 2  太阳盐复合材料势函数参数[24,25]

    Table 2.  Potential parameters of solor salt composites[24,25].

    AtomQ/eE/(10–3 eV)σ
    Na1.006.63730002.407
    K1.004.3360003.188
    N0.954.0175093.431
    O–0.653.4691293.285
    下载: 导出CSV

    表 3  模拟参数

    Table 3.  Simulation parameters.

    原子数460, 920, 1380, 1840, 2300, 2760
    时间步长/fs1
    压强/(105 Pa)1
    系综NPT
    冷却速率/(K·ps–1)0.1, 0.5
    下载: 导出CSV

    表 4  不同尺度下的太阳盐的相变温度

    Table 4.  Phase transition temperature of solar salts at different scales.

    离子数
    4609201380184023002760552011040
    熔点/K493493503518508492493492
    凝固点/K463483473503490483478476
    过冷度/K301030151291516
    下载: 导出CSV

    表 5  纳米线结构太阳盐的相变温度

    Table 5.  Phase transition temperature of nanostructured solar salts

    离子数
    460920
    熔点/K528548
    凝固点/K518543
    过冷度/K105
    下载: 导出CSV

    表 6  不同尺度下的太阳盐的相变潜热

    Table 6.  Phase transition latent heat of solar salts at different scales.

    离子数
    4609201380184023002760
    相变潜热
    /(kJ·kg–1)
    108.75109.39110.12112.25114.69117.57
    下载: 导出CSV

    表 7  纳米线结构太阳盐的相变潜热

    Table 7.  Phase transition latent heat of nanostructured solar salts.

    离子数
    460920
    相变潜热/(kJ·kg–1)141.39150.64
    下载: 导出CSV
    Baidu
  • [1]

    Jiang Z, Leng G, Ye F, Ge Z, Liu C, Wang L 2015 Energy Convers. Manage. 106 165Google Scholar

    [2]

    Alehosseini E, Jafari S. M. 2019 Trends Food Sci. Tech. 91 116Google Scholar

    [3]

    Umair M M, Zhang Y, Zhang S, Tang B 2019 Applied Energy 235 846Google Scholar

    [4]

    Chen X, Gao H, Yang M, Xing L, Dong W, Li A 2019 Energy Storage Mater. 18 349Google Scholar

    [5]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第110—113页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Heat Transport Properties of Mesoporous Composites (Beijing: Science Press) pp110–113 (in Chinese)

    [6]

    Chen X, Tang Z, Chang Y, Gao H, Lv J 2020 iScience 23 101606Google Scholar

    [7]

    Qian T T, Li J H, Xin M, Fan B 2018 ACS Sustain. Chem. Eng. 6 897Google Scholar

    [8]

    Xiao, C, Hg A, Lx A, Wd A, Al A, Pc B 2019 Energy Storage Mater. 18 280Google Scholar

    [9]

    Huang, X, Liu Z, Xia W, Zou R, Han R P S 2014 J. Mater. Chem. A 3 1935Google Scholar

    [10]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S W, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [11]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [12]

    Lewis L J, Jensen P, Barrat J L 1997 Mrs Proceedings 56.4 2248-2257Google Scholar

    [13]

    毋志民, 王新强 2006 原子与分子 23 167Google Scholar

    Wu Z M, Wang X Q 2006 Journal of Atomic and Molecular Physics 23 167Google Scholar

    [14]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518Google Scholar

    [15]

    Kang J W, Hwang H J 2003 Comp. Mater. Sci. 27 305Google Scholar

    [16]

    Wen Y H, Zhu Z Z, Zhu R, Shao G F 2005 Physica E: Low-Dimensional Systems and Nanostructures 25 47

    [17]

    Goitandia A M, Beobide G, Aranzabe E, Aranzabe A 2015 Sol. Energ. Mat. Sol. C. 134 318Google Scholar

    [18]

    Nakano K, Masuda Y, Daiguji H 2015 J. Phys. Chem. C 119 4769Google Scholar

    [19]

    Zou T, X Liang, Wang S, Gao X, Fang, Y 2020 Micropor. Mesopor. Mater. 305 110403Google Scholar

    [20]

    Zhang P, Xiao X, Ma Z W 2016 Appl. Energy 165 472Google Scholar

    [21]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212—220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212–220 (in Chinese)

    [22]

    何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣 2022 71 030503Google Scholar

    He Z Y, Yang Q R, Li Z Y, Mao R, Wang L W, Yan C X 2022 Acta Phys. Sin. 71 030503Google Scholar

    [23]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energ. Mater. Sol. C 200 109897

    [24]

    Hu G J, Cao B Y 2013 J. Appl. Phys. 114 96Google Scholar

    [25]

    吴晨光, 李蓓 2022 复合材料学报 32 1Google Scholar

    [26]

    Karasawa N, Goddard WA 1992 Macromolecules 25 7268Google Scholar

    [27]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Tran. 103 417Google Scholar

    [28]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 385Google Scholar

    [29]

    Zhang C, Chen Y, Yang L, Shi M 2011 Int. J. Heat Mass Transfer 54 4770Google Scholar

    [30]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Advances 6 54763Google Scholar

    [31]

    李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞 2022 71 016101Google Scholar

    Li C, Hou Z Y, Niu Y, Gao Q H, Wang Z, Wang J G, Zou P F 2022 Acta Phys. Sin 71 016101Google Scholar

    [32]

    Nicole P, Thomas B, Claudia M, Markus E, Antje W 2015 Beilstein J. Nanotech. 6 1487Google Scholar

    [33]

    Danneman D M, Johansen J B, Furbo S 2016 Sol. Energ. Mater. Sol. C. 145 287Google Scholar

    [34]

    Kibria M A, Anisur M R, Mahfuz M H, Saidur R, Metselaar I 2015 Energy Convers. Manage. 95 69Google Scholar

    [35]

    Al-Shannaq R, Kurdi J, Al-Muhtaseb S, Dickinson M, Farid M 2015 Energy 87 654

    [36]

    Song Z, Deng Y, Li J, Nian H 2018 Mater. Res. Bull. 102 203Google Scholar

    [37]

    Cao F, Bao Y 2014 Appl. Energy 113 1512Google Scholar

    [38]

    Fang G, Hui L, Fan Y, Xu L, Wu S 2009 Chem. Eng. J. 153 217Google Scholar

    [39]

    Wei L L, Kenichi, Ohsasa 2010 ISIJ Int. 50 1265Google Scholar

    [40]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

    [41]

    Wang W, Zhong Y, Li D, Wang P, Cai Y, Duan Z 2015 J. Electr. Mater. 44 4920Google Scholar

    [42]

    Saranprabhu M K, Rajan K S 2019 Renew. Energy 141 451Google Scholar

    [43]

    Pan K, Li Y, Zhao Q, Zhang S 2018 JOM 71 737Google Scholar

    [44]

    Li Y 2018 Ph. D. Dissertation (Zhengzhou: Zhengzhou University) (in Chinese) [李扬 2018 博士学位论文 (郑州: 郑州大学)]

    [45]

    Eryürek M, Güven 2007 Physica A:Stat. Mech. Appl. 377 514Google Scholar

  • [1] 王季康, 李华, 彭宇飞, 李晓燕, 张新宇. 质子交换膜燃料电池多时间尺度下的动态特性.  , 2022, 71(15): 158802. doi: 10.7498/aps.71.20212015
    [2] 何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣. 介孔尺度及结构对混合硝酸盐热输运特性的影响.  , 2022, 71(3): 030503. doi: 10.7498/aps.71.20211276
    [3] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究.  , 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [4] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究.  , 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [5] 侯旺, 梅风华, 陈国军, 邓喜文. 基于背景最佳滤波尺度的红外图像复杂度评价准则.  , 2015, 64(23): 234202. doi: 10.7498/aps.64.234202
    [6] 曹永青, 林鑫, 汪志太, 王理林, 黄卫东. 液氮冷却条件下激光快速熔凝Ni-28 wt%Sn合金组织演变.  , 2015, 64(10): 108103. doi: 10.7498/aps.64.108103
    [7] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择.  , 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [8] 张宇, 张晓娟, 方广有. 大尺度分层介质电特性参数的反演方法研究.  , 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [9] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 空间变尺度因子球坐标系与四维时空度规.  , 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [10] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究.  , 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [11] 黄起森, 刘礼, 韦修勋, 李金富. 过冷Ni-P合金的凝固行为.  , 2012, 61(16): 166401. doi: 10.7498/aps.61.166401
    [12] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析.  , 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [13] 何 亮, 杜 磊, 庄奕琪, 李伟华, 陈建平. 金属互连电迁移噪声的多尺度熵复杂度分析.  , 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [14] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固.  , 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [15] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征.  , 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究.  , 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [17] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性.  , 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [18] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦.  , 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [19] 董瑞新, 闫循领, 庞小峰, 刘盛纲. 盐对DNA相变影响的非线性特性研究.  , 2003, 52(12): 3197-3202. doi: 10.7498/aps.52.3197
    [20] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
计量
  • 文章访问数:  4812
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 修回日期:  2022-02-10
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map