Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Uniform and constant long-time wireless power transmission of multi-targets in local space based on time reversal

Zhang Zhi-Yuan Li Bing Liu Shi-Qi Zhang Hong-Lin Hu Bin-Jie Zhao De-Shuang Wang Chu-Nan

Uniform and constant long-time wireless power transmission of multi-targets in local space based on time reversal

Zhang Zhi-Yuan, Li Bing, Liu Shi-Qi, Zhang Hong-Lin, Hu Bin-Jie, Zhao De-Shuang, Wang Chu-Nan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The precise, uniform and constant wireless transmission of electromagnetic power to multiple targets in a local finite space is a scientific problem to be solved urgently. Aiming at this problem, in this paper we propose an automatic zone selection channel matching method based on time reversal technique which has the spatiotemporal focusing characteristics. The proposed method can not only adaptively compensate for the channel differences at different targets based on the contribution rate of the multipath signals, but also dynamically divide the working range of the time reversal mirror elements to eliminate the mutual influences between different targets through the use of the distance coefficient. While improving the accuracy of energy focusing, the proposed method also solves the problem that non-uniform microwave power transmission (MPT) of multiple targets, and therefore achieving the constant, uniform and long-time MPT of multi-targets.
      PACS:
      Corresponding author: Li Bing, bllijess@outlook.com
    • Funds: Project supported by the Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K202235), the National Natural Science Foundation of China (Grant No. 61871193), the Key Program of Natural Science Foundation of Guangdong Province, China (Grant No. 2018B030311049), and the Applied Basic Research Program of Sichuan Province, China (Grant No. 19YYJC0025)
    [1]

    Zhu X R, Jin K, Hui Q 2021 IEEE J. Emerging Sel. Top. Power Electron. 9 1147Google Scholar

    [2]

    Zeng Y, Clerckx B, Zhang R 2017 IEEE Trans. Commun. 65 2264Google Scholar

    [3]

    倪旺, 丁飞, 宗军, 纪伟伟, 刘兴江 2019 电源技术 43 357Google Scholar

    Ni W, Ding F, Zong J, Ji W W, Liu X J 2019 Chin. J. Power Sources 43 357Google Scholar

    [4]

    殷正刚, 史黎明, 范满义 2021 电工技术学报 36 1Google Scholar

    Yin Z G, Shi L M, Fan M Y 2021 Trans. China Electrotech. Soc. 36 1Google Scholar

    [5]

    Pries J, Galigekere V P N, Onar O C, Su G J 2020 IEEE Trans. Power Electron. 35 4500Google Scholar

    [6]

    王龙飞 2019 电力电子技术 53 23

    Wang L F 2019 Power Electron. 53 23

    [7]

    Lee J, Lee K 2020 IEEE Trans. Power Electron. 35 6697Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    Joseph S D, Huang Y, Hsu S S H, Alieldin A, Song C Y 2021 IEEE Trans. Microwave Theory Tech. 69 482Google Scholar

    [10]

    黎深根, 陈仲林, 宋磊, 张琳, 李天明, 冯进军, 周碎明 2019 微波学报 35 56Google Scholar

    Li S G, Chen Z L, Song L, Zhang L, Li T M, Feng J J, Zhou S M 2019 J. Microw. 35 56Google Scholar

    [11]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555Google Scholar

    [12]

    Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [13]

    Kaina N, Dupré M, Lerosey G, Fink M 2014 Sci. Rep. 4 6693Google Scholar

    [14]

    Zhao D S, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [15]

    Zhao D S, Guo F 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, USA, July 9−14, 2017 p231

    [16]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [17]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [18]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [19]

    Lee S, Zhang R 2017 IEEE Trans. Signal Process. 65 1685Google Scholar

    [20]

    Chettri L, Bera R 2020 IEEE Internet Things J. 7 16Google Scholar

    [21]

    Ayir N, Riihonen T, Allen M, Fierro M F T 2021 IEEE Trans. Microwave Theory Tech. 69 1917Google Scholar

    [22]

    Lee S, Zeng Y, Zhang R 2018 IEEE Wirel. Commun. Lett. 7 54Google Scholar

    [23]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 IEEE International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications Athens, Greece, March 1−3, 2017 p162

    [24]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [25]

    郭飞 2018 硕士学位论文 (成都: 电子科技大学)

    Guo F 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [26]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [27]

    Bao J L, Zhao D S, Cao W P, Li B, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology Guangzhou, China, May 19−22, 2019, p1

    [28]

    Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Huang Y K 2019 IEEE Access 7 114897Google Scholar

    [29]

    Ku M L, Han Y, Lai H Q, Chen Y, Liu K J R 2016 IEEE Trans. Signal Process. 64 5819Google Scholar

    [30]

    Kim J H, Lim Y J, Nam S W 2019 IEEE Trans. Antennas Propag. 67 5750Google Scholar

    [31]

    李冰 2016 博士学位论文 (广州: 华南理工大学)

    Li B 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [32]

    院琳, 杨雪松, 王秉中 2019 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [33]

    Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [34]

    丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 60 104101Google Scholar

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101Google Scholar

    [35]

    Fusco V F 2006 IEEE Trans. Antennas Propag. 54 1352Google Scholar

  • 图 1  自动区域选择信道匹配方法的逻辑流程图

    Figure 1.  Logic chart of automatic zone selection channel matching method.

    图 2  MPT模型的相关参数 (a) 两个及 (b) 三个待输能目标的布置示意图; (c) 天线单元结构; (d) 激励信号

    Figure 2.  Relevant parameters of the MPT model: Schematic diagrams of (a) two and (b) three MPT targets; (c) antenna element structure; (d) excitation signal.

    图 3  基于TR技术的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Figure 3.  Long-time MPT field strength distribution based on TR technique: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 5  基于自动区域选择信道匹配方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Figure 5.  Long-time MPT field strength distribution based on automatic zone selection channel matching method: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 4  基于信道补偿方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) x方向场强分布

    Figure 4.  Long-time MPT field strength distribution based on channel compensation method: (a) Field strength distribution diagram in the x-y plane; (b) x-direction field strength distribution.

    图 6  基于TR技术的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Figure 6.  Long-time MPT field strength distribution based on TR technique: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    图 7  基于信道补偿方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Figure 7.  Long-time MPT field strength distribution based on channel compensation method: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    图 8  基于自动区域选择信道匹配方法的长时MPT场强分布 (a) x-y平面的场强分布; (b) 立体场强分布

    Figure 8.  Long-time MPT field strength distribution based on automatic zone selection channel matching method: (a) Field strength distribution diagram in the x-y plane; (b) three-dimensional field strength distribution.

    表 1  不同方法在输能时长内各参数均值

    Table 1.  Average value of each parameter under MPT of different methods.

    直接发射TR信道补偿自动区域选择信道匹配
    最大场强差值/(V·m–1)无聚焦4.2780.4700.139
    最大场强偏差率无聚焦7.46%1.02%0.34%
    功率差值/mW无聚焦2.70.2250.1
    功率偏差率无聚焦15.92%2.08%1.21%
    平均输能效率0.120‰0.509‰0.310‰0.326‰
    面积差值/mm2无聚焦22748.333102.667
    最大主副瓣比/dB无聚焦2.6663.4994.703
    DownLoad: CSV

    表 2  不同方法在输能时长内各参数均值

    Table 2.  Average value of each parameter under MPT of different methods.

    直接发射TR信道补偿自动区域选择信道匹配
    平均最大场强差值/(V·m–1)无聚焦3.2684.6550.510
    平均最大场强偏差率无聚焦6.34%10.18%1.14%
    平均功率差值/mW无聚焦1.5732.2510.330
    平均功率偏差率无聚焦11.19%18.73%3.18%
    平均输能效率0.139‰0.412‰0.365‰0.664‰
    平均面积差值/mm2无聚焦74.66797.55643.556
    最大主副瓣比/dB无聚焦4.0163.6793.406
    DownLoad: CSV
    Baidu
  • [1]

    Zhu X R, Jin K, Hui Q 2021 IEEE J. Emerging Sel. Top. Power Electron. 9 1147Google Scholar

    [2]

    Zeng Y, Clerckx B, Zhang R 2017 IEEE Trans. Commun. 65 2264Google Scholar

    [3]

    倪旺, 丁飞, 宗军, 纪伟伟, 刘兴江 2019 电源技术 43 357Google Scholar

    Ni W, Ding F, Zong J, Ji W W, Liu X J 2019 Chin. J. Power Sources 43 357Google Scholar

    [4]

    殷正刚, 史黎明, 范满义 2021 电工技术学报 36 1Google Scholar

    Yin Z G, Shi L M, Fan M Y 2021 Trans. China Electrotech. Soc. 36 1Google Scholar

    [5]

    Pries J, Galigekere V P N, Onar O C, Su G J 2020 IEEE Trans. Power Electron. 35 4500Google Scholar

    [6]

    王龙飞 2019 电力电子技术 53 23

    Wang L F 2019 Power Electron. 53 23

    [7]

    Lee J, Lee K 2020 IEEE Trans. Power Electron. 35 6697Google Scholar

    [8]

    宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪 2021 70 108401Google Scholar

    Song J J, Zhang L Q, Chen L, Zhou L, Sun L, Lan J F, Xi C H, Li J H 2021 Acta Phys. Sin. 70 108401Google Scholar

    [9]

    Joseph S D, Huang Y, Hsu S S H, Alieldin A, Song C Y 2021 IEEE Trans. Microwave Theory Tech. 69 482Google Scholar

    [10]

    黎深根, 陈仲林, 宋磊, 张琳, 李天明, 冯进军, 周碎明 2019 微波学报 35 56Google Scholar

    Li S G, Chen Z L, Song L, Zhang L, Li T M, Feng J J, Zhou S M 2019 J. Microw. 35 56Google Scholar

    [11]

    Fink M 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 555Google Scholar

    [12]

    Lerosey G, Rosny J D, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [13]

    Kaina N, Dupré M, Lerosey G, Fink M 2014 Sci. Rep. 4 6693Google Scholar

    [14]

    Zhao D S, Zhu M 2016 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [15]

    Zhao D S, Guo F 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, USA, July 9−14, 2017 p231

    [16]

    Guo S, Zhao D S, Wang B Z, Cao W P 2020 IEEE Trans. Antennas Propag. 68 8249Google Scholar

    [17]

    周洪澄, 王秉中, 丁帅, 欧海燕 2013 62 114101Google Scholar

    Zhou H C, Wang B Z, Ding S, Ou H Y 2013 Acta Phys. Sin. 62 114101Google Scholar

    [18]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [19]

    Lee S, Zhang R 2017 IEEE Trans. Signal Process. 65 1685Google Scholar

    [20]

    Chettri L, Bera R 2020 IEEE Internet Things J. 7 16Google Scholar

    [21]

    Ayir N, Riihonen T, Allen M, Fierro M F T 2021 IEEE Trans. Microwave Theory Tech. 69 1917Google Scholar

    [22]

    Lee S, Zeng Y, Zhang R 2018 IEEE Wirel. Commun. Lett. 7 54Google Scholar

    [23]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2017 IEEE International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications Athens, Greece, March 1−3, 2017 p162

    [24]

    Bellizzi G G, Crocco L, Iero D A M, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [25]

    郭飞 2018 硕士学位论文 (成都: 电子科技大学)

    Guo F 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [26]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [27]

    Bao J L, Zhao D S, Cao W P, Li B, Wang B Z 2019 International Conference on Microwave and Millimeter Wave Technology Guangzhou, China, May 19−22, 2019, p1

    [28]

    Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Huang Y K 2019 IEEE Access 7 114897Google Scholar

    [29]

    Ku M L, Han Y, Lai H Q, Chen Y, Liu K J R 2016 IEEE Trans. Signal Process. 64 5819Google Scholar

    [30]

    Kim J H, Lim Y J, Nam S W 2019 IEEE Trans. Antennas Propag. 67 5750Google Scholar

    [31]

    李冰 2016 博士学位论文 (广州: 华南理工大学)

    Li B 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [32]

    院琳, 杨雪松, 王秉中 2019 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [33]

    Carminati R, Pierrat R, Rosny J D, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [34]

    丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 60 104101Google Scholar

    Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101Google Scholar

    [35]

    Fusco V F 2006 IEEE Trans. Antennas Propag. 54 1352Google Scholar

Metrics
  • Abstract views:  5070
  • PDF Downloads:  84
Publishing process
  • Received Date:  01 July 2021
  • Accepted Date:  09 October 2021
  • Available Online:  27 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回
Baidu
map