Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological zero-energy modes in time-reversal-symmetry-broken systems

Zhang Wei-Feng Li Chun-Yan Chen Xian-Feng Huang Chang-Ming Ye Fang-Wei

Citation:

Topological zero-energy modes in time-reversal-symmetry-broken systems

Zhang Wei-Feng, Li Chun-Yan, Chen Xian-Feng, Huang Chang-Ming, Ye Fang-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The well-known Su-Schrieffer-Heeger (SSH) model predicts that a chain of sites with alternating coupling constant exhibits two topological distinct phases, and at the truncated edge of the topological nontrivial phase there exists topologically protected edge modes. Such modes are named zero-energy modes as their eigenvalues are located exactly at the midgaps of the corresponding bandstructures. The previous publications have reported a variety of photonic realizations of the SSH model, however, all of these studies have been restricted in the systems of time-reversal-symmetry (TRS), and thus the important question how the breaking of TRS affects the topological edge modes has not been explored. In this work, to the best of our knowledge, we study for the first time the topological zero-energy modes in the systems where the TRS is broken. The system used here is semiconductor microcavities supporting exciton-polariton quasi-particle, in which the interplay between the spin-orbit coupling stemming from the TE-TM energy splitting and the Zeeman effect causes the TRS to break. We first study the topological edge modes occurring at the edge of one-dimensional microcavity array that has alternative coupling strengths between adjacent microcavity, and, by rigorously solving the Schrdinger-like equations (see Eq.(1) or Eq.(2) in the main text), we find that the eigen-energies of topological zero-energy modes are no longer pinned at the midgap position:rather, with the increasing of the spin-orbit coupling, they gradually shift from the original midgap position, with the spin-down edge modes moving toward the lower band while the spin-up edge modes moving towards the upper band. Interestingly enough, the mode profiles of these edge modes remain almost unchanged even they are approaching the bulk transmission bands, which is in sharp contrast to the conventional defect modes that have an origin of bifurcation from the Bloch mode of the upper or lower bands. We also study the edge modes in the two-dimensional microcavity square array, and find that the topological zero modes acquire mobility along the truncated edge due to the coupling from the adjacent arrays. Importantly, owing to the breaking of the TRS, a pair of counterpropagating edge modes, of which one has a momentum k and the other has -k, is no longer of energy degeneracy; as a result the scattering between the forward-and backward-propagating modes is greatly suppressed. Thus, we propose the concept of the one-dimensional topological zero-energy modes that are propagating along the two-dimensional lattice edge, with extremely weak backscattering even on the collisions of the topological zero-energy modes with structural defects or disorder.
      Corresponding author: Ye Fang-Wei, fangweiye@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104181, 61475101) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110073120074).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [4]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [5]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821

    [6]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [7]

    Longhi S 2013 Opt. Lett. 38 3716

    [8]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photon. Rev. 9 392

    [9]

    Ge L, Wang L, Xiao M, Wen W, Chan C T, Han D 2015 Opt. Express 23 21585

    [10]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901

    [11]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, Kivshar Y S 2015 Nanoscale 7 11904

    [12]

    Schomerus H 2013 Opt. Lett. 38 1912

    [13]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633

    [14]

    Xiao M, Zhang Z Q, Chan C T Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [15]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [16]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817

    [17]

    Teo J C Y, Hughes T L 2013 Phys. Rev. Lett. 111 047006

    [18]

    Benalcazar W A, Teo J C Y, Hughes T L 2014 Phys. Rev. B 89 224503

    [19]

    Noh J, Benalcazar W A, Huang S, Collins M J, Chen K, Hughes T L, Rechtsman M C 2016 arXiv: 1611.02373v1

    [20]

    Nalitov A V, Solnyshkov D D, Malpuech G 2015 Phys. Rev. Lett. 114 116401

    [21]

    Bardyn C E, Karzig T, Refael G, Liew T C 2015 Phys. Rev. B 91 161413

    [22]

    Karzig T, Bardyn C E, Lindner N H, Refael G Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [23]

    Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [24]

    Milićević M, Ozawa T, Andreakou P, Carusotto I, Jacqmin T, Galopin E, Amo A 2015 2D Mater. 2 034012

    [25]

    Sich M, Krizhanovskii D N, Skolnick M S, Gorbach A V, Hartley R, Skryabin D V, Santos P V 2012 Nat. Photon. 6 50

    [26]

    Kartashov Y V, Skryabin D V 2016 Optica 3 1228

    [27]

    Li Y M, Li J, Shi L K, Zhang D, Yang W, Chang K 2015 Phys. Rev. Lett. 115 166804

    [28]

    Flayac H 2012 Ph. D. Dissertation (Clermont-Ferrand: Université Blaise Pascal-Clermont-Ferrand Ⅱ)

    [29]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press) p25

    [30]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [31]

    Li Y M, Zhou X, Zhang Y Y, Zhang D, Chang K 2017 Phys. Rev. B 96 035406

    [32]

    Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Vicencio R A 2014 New J. Phys. 16 063061

    [33]

    Schulz S A, Upham J, O’Faolain L, Boyd R W 2017 Opt. Lett. 42 3243

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [4]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772

    [5]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821

    [6]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [7]

    Longhi S 2013 Opt. Lett. 38 3716

    [8]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photon. Rev. 9 392

    [9]

    Ge L, Wang L, Xiao M, Wen W, Chan C T, Han D 2015 Opt. Express 23 21585

    [10]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901

    [11]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, Kivshar Y S 2015 Nanoscale 7 11904

    [12]

    Schomerus H 2013 Opt. Lett. 38 1912

    [13]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633

    [14]

    Xiao M, Zhang Z Q, Chan C T Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [15]

    Deng H, Chen X, Panoiu N C, Ye F 2016 Opt. Lett. 41 4281

    [16]

    Christodoulides D N, Lederer F, Silberberg Y 2003 Nature 424 817

    [17]

    Teo J C Y, Hughes T L 2013 Phys. Rev. Lett. 111 047006

    [18]

    Benalcazar W A, Teo J C Y, Hughes T L 2014 Phys. Rev. B 89 224503

    [19]

    Noh J, Benalcazar W A, Huang S, Collins M J, Chen K, Hughes T L, Rechtsman M C 2016 arXiv: 1611.02373v1

    [20]

    Nalitov A V, Solnyshkov D D, Malpuech G 2015 Phys. Rev. Lett. 114 116401

    [21]

    Bardyn C E, Karzig T, Refael G, Liew T C 2015 Phys. Rev. B 91 161413

    [22]

    Karzig T, Bardyn C E, Lindner N H, Refael G Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [23]

    Bleu O, Solnyshkov D D, Malpuech G 2016 Phys. Rev. B 93 085438

    [24]

    Milićević M, Ozawa T, Andreakou P, Carusotto I, Jacqmin T, Galopin E, Amo A 2015 2D Mater. 2 034012

    [25]

    Sich M, Krizhanovskii D N, Skolnick M S, Gorbach A V, Hartley R, Skryabin D V, Santos P V 2012 Nat. Photon. 6 50

    [26]

    Kartashov Y V, Skryabin D V 2016 Optica 3 1228

    [27]

    Li Y M, Li J, Shi L K, Zhang D, Yang W, Chang K 2015 Phys. Rev. Lett. 115 166804

    [28]

    Flayac H 2012 Ph. D. Dissertation (Clermont-Ferrand: Université Blaise Pascal-Clermont-Ferrand Ⅱ)

    [29]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press) p25

    [30]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901

    [31]

    Li Y M, Zhou X, Zhang Y Y, Zhang D, Chang K 2017 Phys. Rev. B 96 035406

    [32]

    Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Vicencio R A 2014 New J. Phys. 16 063061

    [33]

    Schulz S A, Upham J, O’Faolain L, Boyd R W 2017 Opt. Lett. 42 3243

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [5] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [6] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [7] Xue Hai-Bin, Duan Zhi-Lei, Chen Bin, Chen Jian-Bin, Xing Li-Li. Electron transport through Su-Schrieffer-Heeger chain with spin-orbit coupling. Acta Physica Sinica, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [10] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [12] Xu Nan, Zhang Yan. Topological edge states with skin effect in a trimerized non-Hermitian lattice. Acta Physica Sinica, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [13] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [15] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [19] Wang Huai-Qiang, Yang Yun-You, Ju Yan, Sheng Li, Xing Ding-Yu. Phase transition of ultrathin Bi2Se3 film sandwiched between ferromagnetic insulators. Acta Physica Sinica, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  12748
  • PDF Downloads:  913
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2017
  • Accepted Date:  28 September 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map