搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响

江翠 李家锐 亓迪 张莲莲

引用本文:
Citation:

具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响

江翠, 李家锐, 亓迪, 张莲莲

Effect of imaginary potential energy with parity-time symmetry on the band structures and edge states of T-graphene

Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian
PDF
导出引用
  • 本文通过T-型石墨烯结构的条带两侧分别施加单层或者双层具有宇称-时间(PT)对称性的虚势能,考察了非厄米机制对能谱和边缘态的调控作用。结果发现,当对条带最外侧单层格点施加虚势能时,边缘态的能量出现虚部,并且从局域在系统两侧变为一侧。而拓扑平庸区出现PT对称相转变。当虚势能达到临界值时,体态的能隙中会有新的虚能边缘态。另一方面,当施加双层虚势能时,体系中会出现两种不同的边缘态。一种是出现在顶带和低带、局域在系统一侧的边缘态,另一种是出现在第二条和第三条能带中间、局域性相对较弱的边缘态,且不会进入到能隙中。本工作有助于理解PT对称的边缘虚势能对T-型石墨烯结构物性的调控作用。
    This paper investigates the regulatory effect of non-Hermitian mechanisms on energy spectra and edge states by applying a single or double layer of imaginary potentials with PT symmetry on both sides of the T-graphene ribbon. The findings indicate that the type of imaginary potential application has a significant modulation effect on the energy band structure and localization of the system. Specifically, when the imaginary potentials are applied to the outermost monolayer lattice point of the ribbon, the energy of the edge states appears in the imaginary part. For its probability density distribution, its locality changes from being localized on both sides to one side and becomes stronger with the increase of imaginary potentials. Additionally, the PT symmetry phase transition occurs in the topologically trivial region. Notably, as the imaginary potentials reach a critical value, new imaginary-energy edge states emerge within the bulk state energy gap and also show the phenomenon that the localization is on one side of the system. Furthermore, when double-layer imaginary potentials are applied, two different edge states will appear in the system. The first type appears in the top and bottom bands, localized on one side of the system. The second type emerges in the middle of the second and third energy bands, displaying relatively weak localization and not penetrating the energy gap. This work helps to understand the regulatory effect of the edge imaginary potentials of PT symmetry on the physical properties of T-graphene structures.
  • [1]

    Martinez Alvarez V M, Coutinho-Filho M D 2019 Phys. Rev. A 99 013833

    [2]

    Kitaev A Y 2001 Phys. Usp. 44 131

    [3]

    Wakatsuki R, Ezawa M, Tanaka Y, Nagaosa N 2014 Phys. Rev. B 90 014505

    [4]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Novoselov K, Fal’ko V, Colombo L, Gellert P R, Schwab M G, Kin K 2012 Nature 490 192

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Guo H -M, Franz M 2009 Phys. Rev. B 80 113102

    [8]

    Liu F, Katsunori W 2017 Phys. Rev. Lett. 118 076803

    [9]

    Guo S-J, Li Y-Z, Li T-Z, Fan X-Y, Q C-Y 2022 Acta Phys. Sin. 71 070201 (in Chinese) [郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印 2022 71 070201]

    [10]

    Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M, Sengstock K 2011 Nat. Phys. 7 434

    [11]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305

    [12]

    Zhu K-J, Guo Z-W, Chen H 2022 Acta Phys. Sin. 71 131101 (in Chinese) [祝可嘉, 郭志伟, 陈鸿 2022 71 131101]

    [13]

    Li J-R, Jiang C, Su H, Qi D, Zhang L-L, Gong W-J 2024 Front. Phys. 19 33204

    [14]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803

    [15]

    Li J-R, Zhang L-L, Zhao C-H, Zhang S-F, Zhu Y-L, Gong W-J 2024 Phys. Rev. B 109, 165407 (2024)

    [16]

    Yuce C 2018 Phys. Rev. A 97 042118

    [17]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [18]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102

    [19]

    Bender C M 2007 Rep. Progr. Phys. 70 947

    [20]

    Lieu S 2018 Phys. Rev. B 97 045106

    [21]

    Jin L 2017 Phys. Rev. A 96 032103

    [22]

    Li J-R, Wang Z-A, Xu T-T, Zhang L-L, Gong W-J 2022 Acta Phys. Sin. 71 177302 (in Chinese) [李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江 71 177302]

    [23]

    Wang X, Liu T, Xiong Y, Tong P 2015 Phys. Rev. A 92 012116

    [24]

    Zhao C-H, Li J-R, Jiang C, Zhang L-L, Gong W-J 2024 Phys. Rev. A 109 042203

    [25]

    Wu H C, Jin L, Song Z 2019 Phys. Rev. B 100, 155117

    [26]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901

    [27]

    Zhen B, Hsu C W, Igarashi Y C, Lu L, Kaminer I, Pick A, Chua S -L, Joannopoulos J D, Soljačić M 2015 Nature 525 354

    [28]

    Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101

    [29]

    Yang Y, Yang J, Li X, Zhao Y 2018 Phys. Lett. A 382 723

    [30]

    Kang Y T, Lu C, Yang F, Yao D X 2019 Phys. Rev. B 99 184506

    [31]

    Resta R 1994 Rev. Mod. Phys. 66 899

    [32]

    Fang C, Gilbert M J, Bernevig B A 2012 Phys. Rev. B 86 115112

    [33]

    Yan L, Zhang D, Wang X-J, Yan J-Y 2023 New J. Phys. 25 043020

    [34]

    Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803

    [35]

    Zhai L J, Huang G Y, Yin S, 2021, Phys. Rev. B 104 014202

    [36]

    Liu J-L, Pang T-F, Yang X-S, Wang Z-L, 2022 Acta Phys. Sin. 71 227402 (in Chinese) [刘佳琳, 庞婷方, 杨孝森, 王正岭 71 227402.]

    [37]

    Jin L, Song Z 2019 Phys. Rev. B 99, 081103(R)

  • [1] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性.  , doi: 10.7498/aps.72.20231286
    [2] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态.  , doi: 10.7498/aps.71.20221292
    [3] 夏群, 邓文基. 体态和边缘态的电导峰.  , doi: 10.7498/aps.71.20212424
    [4] 张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究.  , doi: 10.7498/aps.70.20201662
    [5] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态.  , doi: 10.7498/aps.68.20190214
    [6] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态.  , doi: 10.7498/aps.68.20190112
    [7] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , doi: 10.7498/aps.66.220201
    [8] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , doi: 10.7498/aps.64.097302
    [9] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态.  , doi: 10.7498/aps.62.067301
    [10] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , doi: 10.7498/aps.62.087301
    [11] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量.  , doi: 10.7498/aps.59.7729
    [12] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算.  , doi: 10.7498/aps.56.3198
    [13] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较.  , doi: 10.7498/aps.56.346
    [14] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究.  , doi: 10.7498/aps.55.5349
    [15] 康 帅, 刘 强, 钟振祥, 张现周, 史庭云. 氢原子Rydberg态抗磁谱的高阶B-spline基组计算.  , doi: 10.7498/aps.55.3380
    [16] 韩慧仙, 彭 谦, 文振翼, 王育彬. S2O分子的局域势能面和振动光谱的解析.  , doi: 10.7498/aps.54.78
    [17] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究.  , doi: 10.7498/aps.54.186
    [18] 谷 娟, 梁九卿. 施主中心量子点能谱分析.  , doi: 10.7498/aps.54.5335
    [19] 孟庆国, 蔡庆东, 李存标. 能谱在解释湍流能量级串中值得注意的一个问题.  , doi: 10.7498/aps.53.3090
    [20] 张红梅, 马东平, 刘德. LiNbO_3:Ni~(2+)的常压能谱和g因子.  , doi: 10.7498/aps.51.1554
计量
  • 文章访问数:  98
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-14

/

返回文章
返回
Baidu
map