-
宽带无线通信用户大多处在复杂的环境中,其时变多径传播和开放特性将严重影响通信系统的性能.针对物理层安全研究中的窃听信道问题,提出了一种适用于宽带无线多径信道的联合时间反演技术和发端人工噪声的物理层安全传输机制.首先,在一个典型窃听信道模型中采用时间反演技术,利用其时空聚焦性来提高信息在传输过程中的安全性;其次,由于时间反演的时空聚焦性,信息在聚焦点附近容易被窃听,通过在发送端加入人工噪声来扰乱窃听用户对保密信息的窃听,由于合法用户采用零空间人工噪声法,人工噪声对合法用户没有影响.理论分析和仿真结果表明,与已有物理层安全机制相比,所提机制可以有效地提高系统的保密信干噪比和可达保密速率,降低合法用户的误比特率,系统的保密性能得到提升.Broadband wireless communication is implemented primarily in a complicated environment. The complex environment with time-varying multi-path propagation characteristics will seriously affect the performance of communication. To solve the problem of insecurity in information transmission in wireless channels, in this paper a system is modeled by using the multi-input single output eavesdropping channel model and the security of information transmission through time reversal technology is ensured. Another problem is that the information focuses on the receiving point. Owing to the temporal and spatial focusing characteristics of the time reversal technology the information near the receiving point can be eavesdropped easily. To solve this problem, a secure transmission scheme based on time reversal technology with artificial noise interference on the transmitter side is proposed. One of the core technologies to solve this problem is to introduce the environment adaptive technique–time reversal in the wireless link. Further, the problem of a wiretap channel in physical layer security research has become a popular research topic in recent years. To solve the problems about the physical layer wiretap channel and multi-path fading in wireless channels, a novel concept combining time reversal technology with physical layer security technology is proposed. In this paper, a physical layer secure transmission scheme based on the joint time reversal technique and artificial noise at the sending end is proposed for the wireless multi-path channel. First, in a typical wiretap channel model the time reversal technique is used to improve the security of the information transmission process by using the properties of spatial and temporal focusing. It refers to the fact that information can be focused at a given moment and in space. Second, as the information is easily eavesdropped near the focus point, artificial noise is added to the sending end to disrupt the ability of the eavesdropper to eavesdrop. The artificial noise has no effect on legitimate user due to the use of null-space artificial noise in legitimate user. Based on this scheme, a closed expression, such as secure signal-to-interference and signal-to-noise ratio, an achievable secrecy rate and bit error rate are obtained, and the influences of the number of antennas, signal-to-noise ratio, and artificial noise are analyzed. The theoretical analysis and simulation results show that the proposed scheme has a higher secrecy signal-to-noise ratio, a higher rate of secrecy, and a lower bit error rate of the legitimate user than the the existing physical layer security schemes.
-
Keywords:
- wiretap channel /
- time reversal /
- artificial noise /
- spatial and temporal focusing
[1] Zhao D S, Yue W J, Yu M, Zhang S X 2012 Acta Phys. Sin. 61 074102 (in Chinese) [赵德双, 岳文君, 余敏, 张升学 2012 61 074102]
[2] Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese) [丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 60 104101]
[3] Chen Y, Wang B, Han Y, Lai H Q, Safar Z, Liu K J R 2016 IEEE Signal Process. Mag. 33 17
[4] Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 22 (in Chinese) [王秉中, 臧锐, 周洪澄 2013 微波学报 29 22]
[5] Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese) [陈英明, 王秉中, 葛广顶 2012 61 024101]
[6] Ge G D, Wang B Z, Huang H Y, Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese) [葛广顶, 王秉中, 黄海燕, 郑罡 2009 58 8249]
[7] Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145
[8] Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102 (in Chinese) [臧锐, 王秉中, 丁帅, 龚志双 2016 65 204102]
[9] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 63 134101]
[10] Francisco P R, Juan V V, Pablo P, Francisco L V, Rafael L B, Miguel A L G 2016 Sensors-Basel 6 1
[11] Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G 2004 Phys. Rev. Lett. 92 1
[12] Zhang G M 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [张光旻 2013 硕士学位论文 (成都: 电子科技大学)]
[13] Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372
[14] Yang N, Suraweera H A, Collings I B, Yuen C 2013 IEEE Trans. Inf. Forensics Security 8 254
[15] Tran D D, Ha D B, Tran H V, Hong E K 2015 Iete J. Res. 61 363
[16] Rahmanpour A, Vakili V T, Razavizadeh S M 2017 Wireless Pers. Commun. 95 1533
[17] Zhang L, Zhang H, Wu D, Yuan D 2015 IEEE Global Communications Conference San Diego, CA, USA, Dec. 6-10, 2015 p1
[18] Wang W, Teh K C, Li K H 2017 IEEE Trans. Inf. Forensics Security 12 1470
[19] Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372
[20] Tran D D, Ha D B, Tranha V, Hong E K 2015 Iete J. Res. 61 363
[21] Cao W, Lei J, Liu W, Li X T 2014 Communications Security Conference Beijing, China, May 22-24, 2014 p1
[22] Tran V T, Ha D B, Tran D D 2014 Computing, Management and Telecommunications Da Nang, Vietnam April 27-29, 2014 p70
[23] Amirzadeh A, Taieb M H, Chouinard J Y 2017 Canadian Workshop on Information Theory Quebec City, QC, Canada June 11-14, 2017 p1
[24] Han F, Yang Y H, Wang B B, Wu Y L, Rayliu K J 2012 IEEE Trans. Commun. 60 1953
[25] Feng Y, Hou X Y, Wei H, Zhu Y, Gao L 2014 Computer Technol. Develop. 12 146 (in Chinese) [冯元, 侯晓赟, 魏浩, 朱艳, 高磊 2014 计算机技术与发展 12 146]
[26] Simon M, Alouini M 2005 Digital Communication over Fading Channels of Second Order (Hoboken: Wiley-Interscience) pp17-43
[27] Lei W J, Lin X Z, Yang X Y, Xie X Z 2016 JEIT 38 2887 (in Chinese) [雷维嘉, 林秀珍, 杨小燕, 谢显中 2016 电子与信息学报 38 2887]
[28] Wang B, Wu Y, Han F, Yang Y H, Liu K J R 2011 IEEE J. Sel. Area. Commun. 29 1698
[29] Zhao L K 2013 M. S. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese) [赵刘可 2013 硕士学位论文 (郑州: 解放军信息工程大学)]
[30] Emami M, Vu M, Hansen J, Paulraj A J, Papanicolaou G 2004 Signals, Systems and Computers Pacific Grove, CA, USA, USA, Nov. 7-10, 2004 p218
[31] Moose P H 1994 IEEE Trans. Common. 42 2908
[32] Lee J, Lou H L, Toumpakaris D, Cioffi J M 2006 IEEE Trans. Wireless Commun. 5 3360
-
[1] Zhao D S, Yue W J, Yu M, Zhang S X 2012 Acta Phys. Sin. 61 074102 (in Chinese) [赵德双, 岳文君, 余敏, 张升学 2012 61 074102]
[2] Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese) [丁帅, 王秉中, 葛广顶, 王多, 赵德双 2011 60 104101]
[3] Chen Y, Wang B, Han Y, Lai H Q, Safar Z, Liu K J R 2016 IEEE Signal Process. Mag. 33 17
[4] Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 22 (in Chinese) [王秉中, 臧锐, 周洪澄 2013 微波学报 29 22]
[5] Chen Y M, Wang B Z, Ge G D 2012 Acta Phys. Sin. 61 024101 (in Chinese) [陈英明, 王秉中, 葛广顶 2012 61 024101]
[6] Ge G D, Wang B Z, Huang H Y, Zheng G 2009 Acta Phys. Sin. 58 8249 (in Chinese) [葛广顶, 王秉中, 黄海燕, 郑罡 2009 58 8249]
[7] Nardis L D, Fiorina J, Panaitopol D, Benedetto M G D 2013 Telecommun. Syst. 52 1145
[8] Zang R, Wang B Z, Ding S, Gong Z S 2016 Acta Phys. Sin. 65 204102 (in Chinese) [臧锐, 王秉中, 丁帅, 龚志双 2016 65 204102]
[9] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 63 134101]
[10] Francisco P R, Juan V V, Pablo P, Francisco L V, Rafael L B, Miguel A L G 2016 Sensors-Basel 6 1
[11] Lerosey G, de Rosny J, Tourin A, Derode A, Montaldo G 2004 Phys. Rev. Lett. 92 1
[12] Zhang G M 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [张光旻 2013 硕士学位论文 (成都: 电子科技大学)]
[13] Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372
[14] Yang N, Suraweera H A, Collings I B, Yuen C 2013 IEEE Trans. Inf. Forensics Security 8 254
[15] Tran D D, Ha D B, Tran H V, Hong E K 2015 Iete J. Res. 61 363
[16] Rahmanpour A, Vakili V T, Razavizadeh S M 2017 Wireless Pers. Commun. 95 1533
[17] Zhang L, Zhang H, Wu D, Yuan D 2015 IEEE Global Communications Conference San Diego, CA, USA, Dec. 6-10, 2015 p1
[18] Wang W, Teh K C, Li K H 2017 IEEE Trans. Inf. Forensics Security 12 1470
[19] Alves H, Souza R D, Debbah M, Bennis M 2012 IEEE Signal Process. Lett. 19 372
[20] Tran D D, Ha D B, Tranha V, Hong E K 2015 Iete J. Res. 61 363
[21] Cao W, Lei J, Liu W, Li X T 2014 Communications Security Conference Beijing, China, May 22-24, 2014 p1
[22] Tran V T, Ha D B, Tran D D 2014 Computing, Management and Telecommunications Da Nang, Vietnam April 27-29, 2014 p70
[23] Amirzadeh A, Taieb M H, Chouinard J Y 2017 Canadian Workshop on Information Theory Quebec City, QC, Canada June 11-14, 2017 p1
[24] Han F, Yang Y H, Wang B B, Wu Y L, Rayliu K J 2012 IEEE Trans. Commun. 60 1953
[25] Feng Y, Hou X Y, Wei H, Zhu Y, Gao L 2014 Computer Technol. Develop. 12 146 (in Chinese) [冯元, 侯晓赟, 魏浩, 朱艳, 高磊 2014 计算机技术与发展 12 146]
[26] Simon M, Alouini M 2005 Digital Communication over Fading Channels of Second Order (Hoboken: Wiley-Interscience) pp17-43
[27] Lei W J, Lin X Z, Yang X Y, Xie X Z 2016 JEIT 38 2887 (in Chinese) [雷维嘉, 林秀珍, 杨小燕, 谢显中 2016 电子与信息学报 38 2887]
[28] Wang B, Wu Y, Han F, Yang Y H, Liu K J R 2011 IEEE J. Sel. Area. Commun. 29 1698
[29] Zhao L K 2013 M. S. Dissertation (Zhengzhou: The PLA Information Engineering University) (in Chinese) [赵刘可 2013 硕士学位论文 (郑州: 解放军信息工程大学)]
[30] Emami M, Vu M, Hansen J, Paulraj A J, Papanicolaou G 2004 Signals, Systems and Computers Pacific Grove, CA, USA, USA, Nov. 7-10, 2004 p218
[31] Moose P H 1994 IEEE Trans. Common. 42 2908
[32] Lee J, Lou H L, Toumpakaris D, Cioffi J M 2006 IEEE Trans. Wireless Commun. 5 3360
计量
- 文章访问数: 7050
- PDF下载量: 425
- 被引次数: 0