-
Time reversal technique has the adaptive time-space focusing characteristics, which has been widely used in communication systems, imaging systems, and power combining systems. However, the ideal time reversal processing cannot be implemented in an actual imaging system and some diffusion phenomenon has been observed. In this paper, the diffusion phenomenon of the time reversal field in an imaging system is analyzed based on the time reversal cavity theory. Since the corresponding absorption source cannot be set in an imaging process, the time reversal field will continue to disperse after the convergence. Therefore, the field produced by the time reversal cavity will be similar to the sinc-function near the source. The diffusion field will result in mutual interference between the imaging targets. In a traditional time reversal multi-target imaging system, weaker targets can easily be concealed and artifacts may occur. In this paper, a multi-target imaging technique based on the elimination of the time reversal field diffusion is proposed. In order to eliminate the effect of the diffusion field, the Clean algorithm is used. The Clean algorithm is a de-convolution algorithm, which can effectively suppress the side lobe signal. By using the Clean algorithm in the time reversal imaging system, the interaction between multi-targets can be eliminated. Full-wave simulation shows a good performance of the proposed method. In practice, the time reversal mirrors are used to replace the time reversal cavity, for the fully closed time reversal cavity cannot be implemented. The effects of the time reversal mirrors have also been analyzed in this paper. The result shows that the positions of the time reversal mirrors have an significant influence on the reversed field distribution, which affects the Clean algorithm and the proposed imaging method. In order to eliminate the influence of time-reversal mirror position, an effective time reversal signal equalization algorithm is proposed. In the equalization algorithm, the amplitude of the time reversal signal in the time reversal mirrors is adjusted according to both the distance and the intensity. The proposed equalization algorithm can keep the time reversal field stable and provide effective support for the imaging method.
-
Keywords:
- time reversal field /
- multi-target imaging /
- Clean-algorithm /
- time reversal mirror
[1] Fink M 1997 Phys. Today 50 34
[2] Lerosey G, Rosny J, Tourin A, Derode A, Fink M 2006 Phys. Rev. Lett. 88 154101
[3] Kong Q, Shi Q F, Yu G Z, Zhang M 2012 Chin. Phys. Lett. 29 024208
[4] Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 25 (in Chinese)[王秉中, 臧锐, 周洪澄2013微波学报29 25]
[5] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese)[冯菊, 廖成, 张青洪, 盛楠, 周海京2014 63 134101]
[6] Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101 (in Chinese)[陈秋菊, 姜秋喜, 曾芳玲, 宋长宝2015 64 204101]
[7] Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101
[8] Liu D H, Kang G, Li L, Chen Y, Vasudevan S, Joines W, Liu Q H, Krolik J, Carin L 2005 IEEE Trans. Antennas Propag. 53 3058
[9] Liu X F, Wang B Z, Li J L W 2012 IEEE Trans. Antennas Propag. 60 220
[10] Zhong X M, Liao C, Lin W B 2015 IEEE Trans. Antennas Propag. 63 5619
[11] Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171
[12] Schwarz U J 1978 Astron. Astrophys. 65 345
[13] Bose R 2011 IEEE Trans. Aerosp. Electron. Syst. 47 2190
[14] Rosny J, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propag. 58 3139
[15] Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese)[丁帅, 王秉中, 葛广顶, 王多, 赵德双2011 60 104101]
[16] Carminati R, Saenz J J, Greffet J J, Nieto-Vesperinas M 2000 Phys. Rev. A 62 012712
[17] Carminati R, Pierrat R, Rosny J, Fink M 2007 Opt. Lett. 32 3107
-
[1] Fink M 1997 Phys. Today 50 34
[2] Lerosey G, Rosny J, Tourin A, Derode A, Fink M 2006 Phys. Rev. Lett. 88 154101
[3] Kong Q, Shi Q F, Yu G Z, Zhang M 2012 Chin. Phys. Lett. 29 024208
[4] Wang B Z, Zang R, Zhou H C 2013 J. Microwaves 29 25 (in Chinese)[王秉中, 臧锐, 周洪澄2013微波学报29 25]
[5] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese)[冯菊, 廖成, 张青洪, 盛楠, 周海京2014 63 134101]
[6] Chen Q J, Jiang Q X, Zeng F L, Song C B 2015 Acta Phys. Sin. 64 204101 (in Chinese)[陈秋菊, 姜秋喜, 曾芳玲, 宋长宝2015 64 204101]
[7] Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101
[8] Liu D H, Kang G, Li L, Chen Y, Vasudevan S, Joines W, Liu Q H, Krolik J, Carin L 2005 IEEE Trans. Antennas Propag. 53 3058
[9] Liu X F, Wang B Z, Li J L W 2012 IEEE Trans. Antennas Propag. 60 220
[10] Zhong X M, Liao C, Lin W B 2015 IEEE Trans. Antennas Propag. 63 5619
[11] Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171
[12] Schwarz U J 1978 Astron. Astrophys. 65 345
[13] Bose R 2011 IEEE Trans. Aerosp. Electron. Syst. 47 2190
[14] Rosny J, Lerosey G, Fink M 2010 IEEE Trans. Antennas Propag. 58 3139
[15] Ding S, Wang B Z, Ge G D, Wang D, Zhao D S 2011 Acta Phys. Sin. 60 104101 (in Chinese)[丁帅, 王秉中, 葛广顶, 王多, 赵德双2011 60 104101]
[16] Carminati R, Saenz J J, Greffet J J, Nieto-Vesperinas M 2000 Phys. Rev. A 62 012712
[17] Carminati R, Pierrat R, Rosny J, Fink M 2007 Opt. Lett. 32 3107
Catalog
Metrics
- Abstract views: 6347
- PDF Downloads: 238
- Cited By: 0