Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Algrithm for detecting homoclinic orbits of time-continuous dynamical system and its application

Yang Fang-Yan Hu Ming Yao Shang-Ping

Citation:

Algrithm for detecting homoclinic orbits of time-continuous dynamical system and its application

Yang Fang-Yan, Hu Ming, Yao Shang-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Detecting homoclinic orbits is a key problem in nonlinear dynamical systems, especially in the study of bifurcation and chaos. In this paper, we propose a new method to solve the problem with trajectory optimization. By defining a distance between a saddle point and its near trajectories, the problem becomes a common problem in unconstrained nonlinear optimization to minimize the distance. A subdivision algorithm is also proposed in this paper to improve the integrity of results. By applying the algorithm to the Lorenz system, the Shimizu-Morioka system and the hyperchaotic Lorenz system, we successfully find many homoclinic orbits with the corresponding parameters, which suggests that the method is effective.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61104150), the Natural Science Foundation Project of Chongqing, China (Grant No. cstcjjA40044) and the Doctoral Fund of Chongqing University of Posts and Telecommunication, China (Grant No. A2009-12).
    [1]

    Zhang Q F, Tang X H 2012 Appl. Math. Comput. 218 7164

    [2]

    Li X H, Bi Q S 2012 Acta Phys. Sin. 61 020504 (in Chinese) [李向红, 毕勤胜 2012 61 020504]

    [3]

    Jia B, Gu H G, Li Y Y 2011 Chin. Phys. Lett. 28 090507

    [4]

    Feng J J, Zhang Q C, Wang W 2011 Chin. Phys. B 20 090202

    [5]

    Huan S M, Li Q D, Yang X S 2012 Nonlinear Dyn. 69 1915

    [6]

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678 (in Chinese) [杨晓丽,徐伟, 孙中奎 2006 55 1678]

    [7]

    Li W Y, Zhang Q C, Wang W 2010 Chin. Phys. B 19 060510

    [8]

    Li Q D, Zhou L, Zhou H W 2010 J. Chongqing Univ. Posts and Telecommun. (Natural Science Edition) 22 339 (in Chinese) [李清都, 周丽, 周红伟 2010 重庆邮电大学学报 (自然科学版) 22 339]

    [9]

    Guo K M, Li Q D 2008 J. Chongqing Univ. Posts Telecommun. (Natural Science Edition) 20 221 (in Chinese) [郭克敏, 李清都 2008 重庆邮电大学学报 (自然科学版) 20 221]

    [10]

    Melnikov V 1963 Trans. Moscow Math. Soc. 12 1

    [11]

    Di G H, Xu Y, Xu W, Gu R C 2011 Acta Phys. Sin. 60 020504 (in Chinese) [狄根虎, 许勇, 徐伟, 顾仁财2011 60 020504]

    [12]

    Tian R L, Yang X W, Cao Q J, Wu Q L 2012 Chin. Phys. B 21 020503

    [13]

    Li Q D, Yang X S 2010 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 467

    [14]

    Li Q D 2008 Phys. Lett. A 372 2989

    [15]

    Li Q D, Tang S 2013 Acta Phys. Sin. 62 020510 (in Chinese) [李清都, 唐宋2013 62 020510]

    [16]

    El-Dessoky M M,Yassen M T, Aly E S 2012 Appl. Math. Comput. 218 11859

    [17]

    Li J B, Chen F J 2011 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 3305

    [18]

    Li X Y, Wang H J 2011 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 2695

    [19]

    Li T C, Chen G T, Chen G R 2006 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 3035

    [20]

    Chen P, Xiao L 2010 E. J. Qualitative Theory Diff. Equ. 72 1

    [21]

    Lorenz E N 1963 J. Atmosph. Sci. 20 130

    [22]

    Rodríguez-Luis A J, Freire E, Ponce E 1990 Continuation and Bifurcations: Numerical Techniques and Applications (Leuven:Kluwer Academic Publishers) 197

    [23]

    Freire E, Pizarro L, Rodrigeuz-Luis A J 1999 IMA J. Numer. Anal. 19 51

    [24]

    Beyn W J 1990 IMA J. Numer. Anal. 10 379

    [25]

    Friedman M J, Doedel E J 1993 J. Dyn. Different. Equations 5 37

    [26]

    Sandstede B 1997 IMA J. Numer. Anal. 17 437

    [27]

    Bao J H, Yang Q G 2011 Appl. Math.Comput. 217 6526

    [28]

    De Witte V, Govaerts W, Kuznetsov Y A, Friedman M 2012 ACM T. Math. Software 38 34

    [29]

    Lenci S, Rega G 2011 Nonlinear Dyn. 63 83

    [30]

    Tigan G 2010 Appl. Math. Inf. Sci. 4 383

    [31]

    Li Q D, Yang X S 2010 Acta Phys. Sin. 59 1416 (in Chinese) [李清都, 杨晓松 2010 59 1416]

    [32]

    Li H M, Fan Y Y, Sun H Y, Zhang J, Jia M 2012 Acta Phys. Sin. 61 029501 (in Chinese) [李慧敏, 樊养余, 孙恒义, 张菁, 贾蒙 2012 61 029501]

    [33]

    Li Q D, Tan Y L, Yang F Y 2011 Acta Phys. Sin. 60 030206 (in Chinese) [李清都, 谭宇铃, 杨芳艳 2011 60 030206]

    [34]

    Li Q D, Zhou H W, Yang X S 2012 Acta Phys. Sin. 61 040503 (in Chinese) [李清都, 周红伟, 杨晓松 2012 61 040503]

    [35]

    Shimizu T, Morioka N 1980 Phys. Lett. A 76 201

    [36]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元, 王明军 2007 56 5136]

  • [1]

    Zhang Q F, Tang X H 2012 Appl. Math. Comput. 218 7164

    [2]

    Li X H, Bi Q S 2012 Acta Phys. Sin. 61 020504 (in Chinese) [李向红, 毕勤胜 2012 61 020504]

    [3]

    Jia B, Gu H G, Li Y Y 2011 Chin. Phys. Lett. 28 090507

    [4]

    Feng J J, Zhang Q C, Wang W 2011 Chin. Phys. B 20 090202

    [5]

    Huan S M, Li Q D, Yang X S 2012 Nonlinear Dyn. 69 1915

    [6]

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678 (in Chinese) [杨晓丽,徐伟, 孙中奎 2006 55 1678]

    [7]

    Li W Y, Zhang Q C, Wang W 2010 Chin. Phys. B 19 060510

    [8]

    Li Q D, Zhou L, Zhou H W 2010 J. Chongqing Univ. Posts and Telecommun. (Natural Science Edition) 22 339 (in Chinese) [李清都, 周丽, 周红伟 2010 重庆邮电大学学报 (自然科学版) 22 339]

    [9]

    Guo K M, Li Q D 2008 J. Chongqing Univ. Posts Telecommun. (Natural Science Edition) 20 221 (in Chinese) [郭克敏, 李清都 2008 重庆邮电大学学报 (自然科学版) 20 221]

    [10]

    Melnikov V 1963 Trans. Moscow Math. Soc. 12 1

    [11]

    Di G H, Xu Y, Xu W, Gu R C 2011 Acta Phys. Sin. 60 020504 (in Chinese) [狄根虎, 许勇, 徐伟, 顾仁财2011 60 020504]

    [12]

    Tian R L, Yang X W, Cao Q J, Wu Q L 2012 Chin. Phys. B 21 020503

    [13]

    Li Q D, Yang X S 2010 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20 467

    [14]

    Li Q D 2008 Phys. Lett. A 372 2989

    [15]

    Li Q D, Tang S 2013 Acta Phys. Sin. 62 020510 (in Chinese) [李清都, 唐宋2013 62 020510]

    [16]

    El-Dessoky M M,Yassen M T, Aly E S 2012 Appl. Math. Comput. 218 11859

    [17]

    Li J B, Chen F J 2011 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 3305

    [18]

    Li X Y, Wang H J 2011 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 2695

    [19]

    Li T C, Chen G T, Chen G R 2006 Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 3035

    [20]

    Chen P, Xiao L 2010 E. J. Qualitative Theory Diff. Equ. 72 1

    [21]

    Lorenz E N 1963 J. Atmosph. Sci. 20 130

    [22]

    Rodríguez-Luis A J, Freire E, Ponce E 1990 Continuation and Bifurcations: Numerical Techniques and Applications (Leuven:Kluwer Academic Publishers) 197

    [23]

    Freire E, Pizarro L, Rodrigeuz-Luis A J 1999 IMA J. Numer. Anal. 19 51

    [24]

    Beyn W J 1990 IMA J. Numer. Anal. 10 379

    [25]

    Friedman M J, Doedel E J 1993 J. Dyn. Different. Equations 5 37

    [26]

    Sandstede B 1997 IMA J. Numer. Anal. 17 437

    [27]

    Bao J H, Yang Q G 2011 Appl. Math.Comput. 217 6526

    [28]

    De Witte V, Govaerts W, Kuznetsov Y A, Friedman M 2012 ACM T. Math. Software 38 34

    [29]

    Lenci S, Rega G 2011 Nonlinear Dyn. 63 83

    [30]

    Tigan G 2010 Appl. Math. Inf. Sci. 4 383

    [31]

    Li Q D, Yang X S 2010 Acta Phys. Sin. 59 1416 (in Chinese) [李清都, 杨晓松 2010 59 1416]

    [32]

    Li H M, Fan Y Y, Sun H Y, Zhang J, Jia M 2012 Acta Phys. Sin. 61 029501 (in Chinese) [李慧敏, 樊养余, 孙恒义, 张菁, 贾蒙 2012 61 029501]

    [33]

    Li Q D, Tan Y L, Yang F Y 2011 Acta Phys. Sin. 60 030206 (in Chinese) [李清都, 谭宇铃, 杨芳艳 2011 60 030206]

    [34]

    Li Q D, Zhou H W, Yang X S 2012 Acta Phys. Sin. 61 040503 (in Chinese) [李清都, 周红伟, 杨晓松 2012 61 040503]

    [35]

    Shimizu T, Morioka N 1980 Phys. Lett. A 76 201

    [36]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元, 王明军 2007 56 5136]

  • [1] Wang Zhong-Qiu, Yang Jian-Hua. Aperiodic resonance of a nonlinear system excited by aperiodic binary signal or M-ary signal. Acta Physica Sinica, 2023, 72(22): 222501. doi: 10.7498/aps.72.20231154
    [2] Zhang Lü-Yi, Wang Ge-Li, Tan Gui-Rong, Wu Yue. Experimental study on prediction of nonlinear system based on causality test. Acta Physica Sinica, 2022, 71(8): 080502. doi: 10.7498/aps.71.20211871
    [3] Cheng Gang, Cao Yuan, Liu Kun, Cao Ya-Nan, Chen Jia-Jin, Gao Xiao-Ming. Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer. Acta Physica Sinica, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [4] Xiao Jian-Xin, Chen Ju-Fang, Peng Jian-Hua. Dynamic behavior and chaos synchronization of a simple nonlinear time-delayed system. Acta Physica Sinica, 2013, 62(17): 170507. doi: 10.7498/aps.62.170507
    [5] Jia Meng, Fan Yang-Yu, Li Hui-Min. Computation of invariant manifolds with self-adaptive parameter and trajectories continuation method. Acta Physica Sinica, 2010, 59(11): 7686-7692. doi: 10.7498/aps.59.7686
    [6] Zhou Ying, Zang Qiang. Output feedback adaptive maneuvering for multi-input multi-output uncertain nonlinear systems. Acta Physica Sinica, 2009, 58(11): 7565-7572. doi: 10.7498/aps.58.7565
    [7] Meng Juan, Wang Xing-Yuan. Phase synchronization of chaotic systems based on nonlinear observers. Acta Physica Sinica, 2007, 56(9): 5142-5148. doi: 10.7498/aps.56.5142
    [8] Lei You-Ming, Xu Wei. Homoclinic chaos in averaged oscillator subjected to combined deterministic and narrow-band random excitations. Acta Physica Sinica, 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [9] Yao Li-Na, Gao Jin-Feng, Liao Ni-Huan. Synchronization of a class of chaotic systems using nonlinear observers. Acta Physica Sinica, 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [10] Yang Xiao-Li, Xu Wei, Sun Zhong-Kui. Influence of harmonic and bounded noise excitations on chaotic motion of Duffing oscillator with homoclinic and heteroclinic orbits. Acta Physica Sinica, 2006, 55(4): 1678-1686. doi: 10.7498/aps.55.1678
    [11] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [12] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [13] Yu Hong-Jie, Liu Yan-Zhu. Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [14] Tang Chen, Yan Hai-Qing, Zhang Hao, Liu Ming, Zhang Gui-Min. The arbitrary order implicit multistep exponential time differencing method and its application for nonlinear systems. Acta Physica Sinica, 2004, 53(6): 1699-1703. doi: 10.7498/aps.53.1699
    [15] Leng Yong-Gang, Wang Tai-Yong. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy Noise. Acta Physica Sinica, 2003, 52(10): 2432-2437. doi: 10.7498/aps.52.2432
    [16] Tang Chen, Zhang Hao, Yan Hai-Qing, Zhang Gui-Min. The free-item extrapolated multistep method for precise integration of a nonline ar system and its application in the digital analysis of a chaotic system. Acta Physica Sinica, 2003, 52(5): 1091-1095. doi: 10.7498/aps.52.1091
    [17] Guan Xin-Ping, Fan Zheng-Ping, Zhang Qun-Liang, Wang Yi-Qun. . Acta Physica Sinica, 2002, 51(10): 2216-2220. doi: 10.7498/aps.51.2216
    [18] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [19] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING, LAI JIAN-WEN. AN OCCASIONAL LINEAR FEEDBACK APPROACH TO CONTROL CHAOS. Acta Physica Sinica, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
    [20] WU WEI-GEN, GU TIAN-XIANG. NONLINEAR FEEDBACK FOLLOWING CONTROL OF CHAOTIC SYSTEMS. Acta Physica Sinica, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
Metrics
  • Abstract views:  6770
  • PDF Downloads:  846
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2012
  • Accepted Date:  10 January 2013
  • Published Online:  05 May 2013

/

返回文章
返回
Baidu
map