-
Al ultra-fine grains are prepared by dry roller vibration milling at room temperature. After the ultrasonic hydrolyzing, the Al powders are milled for 2 h, 4 h and 8 h, separately, becoming the colloidal Al(OH)3. After the hydrolyzing production are dried, grinded, calcined, the flaky -Al2O3 nano-particles are obtained, and the particles sizes are in the range from 30 to 50 nm. By X ray diffraction (XRD) analysis method and transmission electron microscope (TEM), we analyze the energy conversion of solid particles in the vibration milling, and study the relation between the structure evolvement of solid particles and mechano-chemical reaction, in order to ascertain ideal milling time. The research results indicate that the solid particles under the action of mechanical force generate a mass of deformation and dislocation flaws and the material is in metastable high-energy state, which is favorable for inducing mechano-chemical reaction. In certain conditions, the surface energy of crystalloid, strain and dislocation energy could be mutually converted. The odds of lattice distortion and dislocation are maximal for the 2 h-milled Al powders, so the material shows a higher chemical reaction activation. On the ultrasonic agitation, the energy is fully released from the material interior, then Al(OH)3 nano-particles are prepared in a short time.
-
Keywords:
- vibration milling /
- structure evolvement /
- -Al2O3 /
- mechanical activation
[1] Heinicke G 1984 Tribochemistry (Berlin: Akademie-Verlag) p11---17
[2] Chen D, Chen Z H 2008 Mechanical Force Chemistry (Beijing: Chemical Industry Press) p1---36 (in Chinese) [陈鼎, 陈振华 2008 机械力化学 (北京:化学工业出版社) 第1---36页]
[3] Thompson J R 1987 Europhysics Letters 55 117
[4] Schlump W 1989 New Materials by Mechanical Alloy Technology (Oberursel: DGM Informations Gesellschaft) p307
[5] Kishimura H, Matsumoto H 2011 Journal of Alloys and Compound 509 4386
[6] Xue J M, Zhou Z H, Wang J 2002 Materials Chemistry and Physics 75 81
[7] Lubomirsky I 2006 Solid State Ionics 177 1639
[8] Dong H N, Wu X X, Wu S Y, Zheng W C 2002 Acta Phys. Sin. 51 616 (in Chinese) [董会宁, 吴晓轩, 邬劭轶, 郑文琛 2002 51 616]
[9] Wang S L 2002 Progress in Natural Science 2 336
[10] Pu Z H, Yang C Z, Qin P, Lou Y W 2008 Powder Diffraction 23 213
[11] Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 55 1325]
[12] Kostic E, Kiss S, Boskovic S, Zec S 1997 Powder Technology 91 49
[13] Yuan T C, Cao Q Y, Li J 2010 Hydrometallurgy 104 136
[14] Kumar S, Kumar R 2011 Ceramics International 37 533
[15] Tkácová K, Heegn H, Stevulová N 1993 International Journal of Mineral Processing 40 17
[16] Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 1
-
[1] Heinicke G 1984 Tribochemistry (Berlin: Akademie-Verlag) p11---17
[2] Chen D, Chen Z H 2008 Mechanical Force Chemistry (Beijing: Chemical Industry Press) p1---36 (in Chinese) [陈鼎, 陈振华 2008 机械力化学 (北京:化学工业出版社) 第1---36页]
[3] Thompson J R 1987 Europhysics Letters 55 117
[4] Schlump W 1989 New Materials by Mechanical Alloy Technology (Oberursel: DGM Informations Gesellschaft) p307
[5] Kishimura H, Matsumoto H 2011 Journal of Alloys and Compound 509 4386
[6] Xue J M, Zhou Z H, Wang J 2002 Materials Chemistry and Physics 75 81
[7] Lubomirsky I 2006 Solid State Ionics 177 1639
[8] Dong H N, Wu X X, Wu S Y, Zheng W C 2002 Acta Phys. Sin. 51 616 (in Chinese) [董会宁, 吴晓轩, 邬劭轶, 郑文琛 2002 51 616]
[9] Wang S L 2002 Progress in Natural Science 2 336
[10] Pu Z H, Yang C Z, Qin P, Lou Y W 2008 Powder Diffraction 23 213
[11] Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 55 1325]
[12] Kostic E, Kiss S, Boskovic S, Zec S 1997 Powder Technology 91 49
[13] Yuan T C, Cao Q Y, Li J 2010 Hydrometallurgy 104 136
[14] Kumar S, Kumar R 2011 Ceramics International 37 533
[15] Tkácová K, Heegn H, Stevulová N 1993 International Journal of Mineral Processing 40 17
[16] Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 1
Catalog
Metrics
- Abstract views: 9453
- PDF Downloads: 967
- Cited By: 0