-
采用基于嵌入原子方法的分子动力学方法模拟了具有体心立方晶格结构的Fe基体中包含小尺寸Cu纳米粒子的Fe-Cu二元体系在升温过程中的原子堆积结构变化. 进行了Cu原子均方位移、Cu原子对分布函数和原子的径向密度分布函数的计算,并对纯Cu原子区、Fe-Cu界面区和纯Fe基体区的分区域原子堆积结构进行了分析. 结果表明,Fe基体内Cu团簇的尺寸及其在Fe基体内所能占据区域的大小,对不同温度下的Cu团簇内原子堆积结构及Fe基体的原子堆积结构具有影响. 升温过程中不同尺寸受基体约束Cu团簇对Fe基体结构改变的影响表现出很大差异. 对于Febulk-Cu135体系,基体的应变临近Fe-Cu界面区,同时在团簇中间的基体区域出现大量空位缺陷和应变集中区;对于Febulk-Cu141体系,随温度升高,基体中出现的应变区域表现为小尺寸、数量多向大尺寸、小数量的变化.Nano-size Cu precipitates are the main products of irradiation embrittlement of nuclear reactor pressure vessel steels. Molecular dynamics simulation within the framework of embedded atom method is performed to study atomic packing change in Fe-Cu binary system, where the small Cu clusters are embedded in the crystal body centered cubic (BCC) Fe lattices. As the temperature increases, atomic packing change occurs in the Fe-Cu binary system. The mean square displacement of Cu atom, pair distribution function of the Cu atoms, and the atomic density profile along the radial direction are calculated. The atom packing structures in pure Cu region, Fe-Cu interface region, and pure Fe matrix are analyzed. The simulation results show that the packing structures in the Cu cluster and the Fe matrix are greatly affected by the sizes of these clusters and the volume of the Fe matrix containing these clusters. The structural changes present apparent differences, for the Fe matrixes contain these confined Cu clusters with different atom numbers during heating. As the Fe matrix can only provide small space to accommodate the Cu atoms, packing patterns in many Cu atoms are disordered for the Febulk-Cu135 system. In this binary system, strain region in the Fe matrix is adjacent to the Cu cluster. In the meantime, there are a lot of vacancy defects and strain regions in the matrix. For the Febulk-Cu141 system, although the Cu cluster contains more atoms, the Fe matrix can accommodate Cu atoms in a larger space, and the majority of these Cu atoms are located at the BCC crystal lattices. With increasing the temperature, the changes can be observed that the number of the strain regions decrease, whereas the sizes of some strain regions increase.
-
Keywords:
- cluster /
- molecular dynamics /
- alloy /
- interface
[1] Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]
[2] Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]
[3] Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]
[4] Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312
[5] Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110
[6] Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18
[7] Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35
[8] Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176
[9] Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86
[10] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]
[11] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]
[12] Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]
[13] Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331
[14] Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52
[15] Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841
[16] Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513
[17] Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097
[18] Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713
[19] Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19
[20] Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118
[21] Zhang L, Fan Q N 2016 Indian J. Phys. 90 9
[22] Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310
[23] Zhang L 2016 J. Phys. Soc. Jpn. 85 054602
[24] Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347
[25] Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1
[26] Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383
[27] Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140
[28] You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236
[29] Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601
[30] Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010
-
[1] Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]
[2] Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]
[3] Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]
[4] Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312
[5] Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110
[6] Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18
[7] Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35
[8] Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176
[9] Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86
[10] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]
[11] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]
[12] Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]
[13] Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331
[14] Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52
[15] Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841
[16] Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513
[17] Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097
[18] Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713
[19] Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19
[20] Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118
[21] Zhang L, Fan Q N 2016 Indian J. Phys. 90 9
[22] Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310
[23] Zhang L 2016 J. Phys. Soc. Jpn. 85 054602
[24] Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347
[25] Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1
[26] Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383
[27] Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140
[28] You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236
[29] Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601
[30] Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010
计量
- 文章访问数: 6354
- PDF下载量: 166
- 被引次数: 0