搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五氟吡啶激发态非绝热弛豫过程中的分子结构

李多多 张嵩

引用本文:
Citation:

五氟吡啶激发态非绝热弛豫过程中的分子结构

李多多, 张嵩

Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine

Li Duo-Duo, Zhang Song
PDF
HTML
导出引用
  • 利用量子化学计算研究了五氟吡啶分子的激发态非绝热弛豫路径中一些关键点的分子结构和能量. 计算确定了五氟吡啶分子基态及两个最低激发态的结构和相应电子态的垂直和绝热激发能, 其中基态是具有C2v对称性的平面结构, 而激发态结构为平面外畸变的半船型结构. 同时确定了3个锥形交叉S2/S1, S1/S0, S2/S0的拓扑结构和能量. 在分支空间中, 锥形交叉S2/S1, S1/S0, S2/S0的结构都是尖峰不对称结构, 分别为船型、半船型和椅式结构, 其能量分别为6.39, 5.16和8.51 eV. 计算结果表明五氟吡啶分子的非辐射弛豫主要是S2态上的波包经锥形交叉S2/S1快速内转换到S1态, 再通过S1/S0弛豫到基态的路径, 而直接通过S2/S0衰减到基态的概率较小.
    In this work, the molecular structure and energy of some critical points in nonradiative relaxation process of the excited state of pentafluoropyridine are studied through quantum chemistry calculation. The structures and the vertical excitation energies and adiabatic excitation energies of the ground state and two lowest exited states are calculated. The geometry of the ground state is a planar structure with C2v symmetry, while the geometries of the two lowest excited states are half-boat structures with out-of-plane distortions. Furthermore, the topology structures and energy of the conical intersections of S2/S1, S1/S0 and S2/S0 are determined. The topology structures of the conical intersections S2/S1, S1/S0 and S2/S0 in the branching space are all peaked with asymmetric structures, and are determined to be structure of boat, half-boat, and chair, respectively. Their corresponding energy values are estimated at 6.39, 5.16 and 8.51 eV, respectively. The results show that the primary non-adiabatic relaxation pathway is the wavepacket of the S2 state rapidly evolving into the S1 state via the S2/S1, and then directly relaxing to the ground state via the S1/S0. In addition, the probability of directly relaxing to the ground state through S2/S0 is smaller.
      通信作者: 张嵩, zhangsong@wipm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0307700)、国家自然科学基金(批准号: 12274418, 22273116, 11974381, 12074389, 21873114)和武汉基础研究知识创新计划(批准号: 2022010801010134)资助的课题.
      Corresponding author: Zhang Song, zhangsong@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307700), the National Natural Science Foundation of China (Grant Nos. 12274418, 22273116, 11974381, 12074389, 21873114), and the Knowledge Innovation Program of Wuhan-Basic Research, China (Grant No. 2022010801010134).
    [1]

    Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar

    [2]

    Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar

    [3]

    Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar

    [4]

    Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar

    [5]

    Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar

    [6]

    Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar

    [7]

    Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar

    [8]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar

    [9]

    Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar

    [10]

    Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar

    [11]

    De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar

    [12]

    Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar

    [13]

    Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar

    [14]

    Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar

    [15]

    Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar

    [16]

    Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar

    [17]

    Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar

    [18]

    Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar

    [19]

    Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar

    [20]

    Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar

    [21]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar

    [22]

    Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT

    [24]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO

    [25]

    Neese F 2022 Wires Comput. 12 1606Google Scholar

    [26]

    Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6

    [27]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [28]

    Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar

    [29]

    Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar

    [30]

    Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar

    [31]

    Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar

    [32]

    Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar

    [33]

    Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar

    [34]

    Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar

    [35]

    Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar

    [36]

    Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar

    [37]

    Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar

    [38]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [39]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [40]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [41]

    Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar

    [42]

    Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar

    [43]

    Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar

  • 图 1  (a)五氟吡啶分子的结构和对应的原子序数; (b)—(d) 利用B3LYP, M062X和SA-CASSCF(8, 8)方法下获得的S0态的几何结构

    Fig. 1.  (a) Molecular structures and corresponding atomic numbers of pentafluoropyridine; (b)–(d) geometric structure of the S0 state was calculated under B3LYP, M062X and SA-CASSCF(8, 8) methods.

    图 2  利用B3LYP, M062X和SA-CASSCF(8, 8)方法优化得到S1态(上图)和S2(下图)的几何结构

    Fig. 2.  Geometric structures of the S1 (upper) and S2 (lower) states were calculated under B3LYP, M062X and SA-CASSCF(8, 8) methods.

    图 3  利用B3LYP和M062X方法计算得到的五氟吡啶分子吸收光谱

    Fig. 3.  Absorption spectra of pentafluoropyridine by B3LYP and M062X levels.

    图 4  SA-CASSCF水平下的锥形交叉的结构 (a) S2/S1; (b) S1/S0; (c) S2/S0

    Fig. 4.  Structures of conical intersections under the SA-CASSCF level: (a) S2/S1; (b) S1/S0; (c) S2/S0.

    图 5  分支空间中锥形交叉的拓扑结构 (a) S2/S1; (b) S1/S0; (c) S2/S0. 能量单位: eV; xy单位: Å

    Fig. 5.  Topological structure of conical crossover in bifurcation space: (a) S2/S1; (b) S1/S0; (c) S2/S0 in the branching space. Energy in eV; x and y in Å.

    图 6  五氟吡啶分子的非辐射弛豫动力学

    Fig. 6.  Nonradiative relaxation dynamics of pentafluoropyridine.

    表 1  利用B3LYP, M062X, SA-CASSCF(8, 8)方法, 得到五氟吡啶分子的S1态和S2态的结构参数(键长单位Å, 二面角单位(°))

    Table 1.  Structural parameters of the S1 and S2 states were obtained by B3LYP, M062X and SA-CASSCF(8, 8) methods, respectively (Bond length and dihedral angle are Å, (°) in units, respectively).

    结构参数
    S1 S2
    B3LYP/
    6-311G*
    M062X/
    6-311G*
    SA-CASSCF/
    6-311G*
    B3LYP/
    6-311G*
    M062X/
    6-311G*
    SA-CASSCF/
    6-311G*
    C1—F1 1.32 1.31 1.31 1.34 1.31 1.29
    C2—F2 1.34 1.33 1.33 1.34 1.33 1.33
    C3—F3 1.41 1.37 1.37 1.39 1.37 1.29
    C4—F4 1.34 1.33 1.33 1.34 1.33 1.32
    C5—F5 1.32 1.31 1.31 1.34 1.31 1.30
    C1—N 1.32 1.32 1.32 1.33 1.32 1.44
    C5—N 1.32 1.32 1.32 1.33 1.32 1.36
    C1—C2 1.43 1.43 1.43 1.38 1.43 1.35
    C2—C3 1.40 1.40 1.40 1.44 1.40 1.43
    C3—C4 1.40 1.40 1.40 1.44 1.40 1.47
    C4—C5 1.43 1.43 1.43 1.38 1.43 1.34
    C1—C5 2.20 2.18 2.21 2.29 2.18 2.36
    C2—C4 2.28 2.28 2.36 2.45 2.28 2.52
    N—C1—C2—C5 3.83 5.31 1.13 3.07 5.42 20.69
    C3—C2—C1—C4 13.26 13.33 0.30 16.25 13.16 20.64
    F3—C3—C4—C1 54.38 52.09 45.11 75.49 51.89 55.04
    F4—C4—C5—C1 13.68 14.05 3.13 12.19 14.58 32.02
    F5—C5—C4—C2 6.96 9.10 2.96 7.32 9.66 18.20
    下载: 导出CSV

    表 2  B3LYP, SA-CASSCF(8, 8), M062X和CASPT2方法结合6-311G*基组计算得到五氟吡啶分子S1态和S2态的VEEs和AEEs (单位为eV)

    Table 2.  VEEs and AEEs (in eV) of pentafluoropyridine in the S1 and S2 states calculated at B3LYP, SA-CASSCF(8, 8), M062X and CASPT2 levels with the 6-311G* basis set.

    Methods S1 S2
    VEEs Dev/% AEEs Dev/% VEEs AEEs
    Exp.a) 4.88 4.60
    RI-SCS-CC2a) 5.10 4.5 4.60 0 6.35
    XMCQDPT2a) 4.89 0.2 4.41 4.1 6.23 5.26
    B3LYP 5.33 9.2 4.41 4.1 6.28 5.26
    SA-CASSCF(8, 8) 5.47 12.1 4.84 5.2 6.92 6.69
    M062X 5.63 9.8 4.80 4.3 6.50 6.15b)
    CASPT2 5.02 2.9 4.41 4.1 6.33
    注: a) 来自参考文献[22]; b) 基于M062X/6-31G*的结果
    下载: 导出CSV

    表 3  SA-CASSCF水平下的锥形交叉的结构参数(键长单位Å, 二面角单位 (°))

    Table 3.  Structural parameters of conical intersections were obtained by SA-CASSCF(8, 8) methods (Bond length and dihedral angle are Å, (°) in units).

    参数 S2/S1 S1/S0 S2/S0
    C1—F1 1.30 1.30 1.31
    C2—F2 1.32 1.31 1.30
    C3—F3 1.30 1.32 1.32
    C4—F4 1.32 1.31 1.30
    C5—F5 1.30 1.30 1.31
    C1—N 1.45 1.31 1.48
    C5—N 1.29 1.33 1.42
    C1—C2 1.47 1.46 1.49
    C2—C3 1.39 1.46 1.48
    C3—C4 1.49 1.47 1.47
    C4—C5 1.45 1.45 1.49
    N—C1—C2—C5 29.72 2.15 22.59
    C3—C2—C1—C4 10.90 46.24 12.28
    F3—C3—C4—C1 11.57 36.30 64.87
    F4—C4—C5—C1 9.84 30.71 0.81
    下载: 导出CSV

    表 4  锥形交叉在分支空间中的拓扑参数

    Table 4.  Topological parameters of conical intersections in branching space.

    参数 S1/S0 S2/S1 S2/S0
    σx/(eV·Å–1) –0.0047 0.1413 0.4016
    σy/(eV·Å–1) –0.0207 0.0757 –0.0001
    ${\varDelta }_{\mathrm{gh}} $ –0.9904 –0.9796 –0.8647
    dgh 1.5000 1.0212 0.6159
    下载: 导出CSV
    Baidu
  • [1]

    Lim J S, Kim S K 2010 Nat. Chem. 2 627Google Scholar

    [2]

    Adachi S, Suzuki T 2020 Phys. Chem. Chem. Phys. 22 2814Google Scholar

    [3]

    Woo K C, Kang D H, Kim S K 2017 J. Am. Chem. Soc. 139 17152Google Scholar

    [4]

    Anand N, Isukapalli S V K, Vennapusa S R 2020 J. Comput. Chem. 41 1068Google Scholar

    [5]

    Zgrablic G, Novello A M, Parmigiani F 2012 J. Am. Chem. Soc. 134 955Google Scholar

    [6]

    Lee H, Kim S Y, Kim S K 2020 Chem. Sci. 11 6856Google Scholar

    [7]

    Adachi S, Schatteburg T, Humeniuk A, Mitric R, Suzuki T 2019 Phys. Chem. Chem. Phys. 21 13902Google Scholar

    [8]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M 2020 Nat. Commun. 11 4042Google Scholar

    [9]

    Pracht P, Bannwarth C 2022 J. Chem. Theory Comput. 18 6370Google Scholar

    [10]

    Benda Z, Jagau T C 2018 J. Chem. Theory Comput. 14 4216Google Scholar

    [11]

    De Sio A, Sommer E, Nguyen X T, Gross L, Popovic D, Nebgen B T, Fernandez-Alberti S, Pittalis S, Rozzi C A, Molinari E, Mena-Osteritz E, Bauerle P, Frauenheim T, Tretiak S, Lienau C 2021 Nat. Nanotechnol. 16 63Google Scholar

    [12]

    Bhebhe M N, De Eulate E A, Pei Y, Arrigan D W, Roth P J, Lowe A B 2017 Macromol. Rapid Comm. 38 1600450Google Scholar

    [13]

    Corley C A, Kobra K, Peloquin A J, Salmon K, Gumireddy L, Knoerzer T A, McMillen C D, Pennington W T, Schoffstall A M, Iacono S T 2019 J. Fluorine Chem. 228 109409Google Scholar

    [14]

    Houck M B, Fuhrer T J, Phelps C R, Brown L C, Iacono S T 2021 Macromolecules 54 5586Google Scholar

    [15]

    Iacono S T, Budy S M, Jin J, Smith D W 2007 J. Polym. Sci. Pol. Chem. 45 5705Google Scholar

    [16]

    Moore L M J, Greeson K T, Stewart K A, Kure D A, Corley C A, Jennings A R, Iacono S T, Ghiassi K B 2020 Macromol. Chem. Phys. 221 2000100Google Scholar

    [17]

    Seyb C, Kerres J 2013 Eur. Polym. J. 49 518Google Scholar

    [18]

    Miller W K, Samuel B, Roe A 1950 J. Am. Chem. Soc. 72 1629Google Scholar

    [19]

    Fuhrer T J, Houck M, Iacono S T 2021 ACS Omega. 48 32607Google Scholar

    [20]

    Hüter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302Google Scholar

    [21]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314Google Scholar

    [22]

    Kus J A, Hüter O, Temps F 2017 J. Chem. Phys. 147 013938Google Scholar

    [23]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian Inc, Revision B.01, Wallingford CT

    [24]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO

    [25]

    Neese F 2022 Wires Comput. 12 1606Google Scholar

    [26]

    Dennington R, Keith T A, Millam J M 2016 Semichem Inc. Shawnee Mission, KS, GaussView, Version 6

    [27]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [28]

    Schaftenaar G, Noordik J H 2000 J. Comput. Aid. Mol. Des. 14 123Google Scholar

    [29]

    Varras P C, Gritzapis P S, Fylaktakidou K C 2017 Mol. Phys. 116 154Google Scholar

    [30]

    Nagaoka S I, Nagashima U 1990 J. Chem. Phys. 94 4467Google Scholar

    [31]

    Chachisvilis M, Zewail A H 1999 J. Phys. Chem. A 103 7408Google Scholar

    [32]

    Cox J M, Bain M, Kellogg M, Bradforth S E, Lopez S A 2021 J. Am. Chem. Soc. 143 7002Google Scholar

    [33]

    Galvan I F, Delcey M G, Pedersen T B, Aquilante F, Lindh R 2016 J. Chem. Theory Comput. 12 3636Google Scholar

    [34]

    Boeije Y, Olivucci M 2023 Chem. Soc. Rev. 52 2643Google Scholar

    [35]

    Paulami G, Arpita G, Debshree G 2021 J. Phys. Chem. A 125 5556Google Scholar

    [36]

    Barbatti M, Aquino J A A, Lischka H 2005 J. Phys. Chem. A 109 5168Google Scholar

    [37]

    Li D, Zhang S 2022 Chin. Phys. B 31 083103Google Scholar

    [38]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [39]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [40]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [41]

    Radloff W, Stert V, Freudenberg T, Hertel I V, Jouvet C, Dedonder-Lardeux C, Solgadi D 1997 Chem. Phys. Lett. 281 20Google Scholar

    [42]

    Radloff W, Freudenberg T, Ritze H H, Stert V, Noack F, Hertel I V 1996 Chem. Phys. Lett. 261 301Google Scholar

    [43]

    Enomoto K, LaVerne J A, Seki S, Tagawa S 2006 J. Phys. Chem. A 110 9874Google Scholar

  • [1] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析.  , 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射.  , 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [4] 徐又捷, 郭迎春, 王兵兵. 多原子分子简正振动频率的量化计算.  , 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [5] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性.  , 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱.  , 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [7] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. TiAl电子态结构的ab initio计算.  , 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [8] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应.  , 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [9] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质.  , 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [10] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究.  , 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [11] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性.  , 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [12] 张兆慧, 李海鹏, 毛仕春. 有机分子的结构与排列方式对原子电荷分布及静电作用的影响.  , 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [13] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究.  , 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [14] 徐波, 王树林, 李来强, 李生娟. 固体颗粒的结构演化与机械力化学效应.  , 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [15] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [16] 吴洋, 段海明. 采用Lennard-Jones原子间势研究(C60)N分子团簇的结构演化行为.  , 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [17] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究.  , 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱.  , 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [19] 郝万军, 李 畅, 魏英进, 陈 岗, 许 武. Li(AlxCo1-x)O2晶体中Co3+电子态的变化及对结构演化的影响.  , 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [20] 赵晓鹏, 高秀敏, 郜丹军, 钟鸿飞. 颗粒质量导致的电流变液结构演化特征.  , 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
计量
  • 文章访问数:  1725
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2023-11-03
  • 上网日期:  2023-11-18
  • 刊出日期:  2024-02-20

/

返回文章
返回
Baidu
map