Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1)

Sun Kai-Chen Liu Shuang Gao Rui-Rui Shi Xiang-Yu Liu He-Yan Luo Hong-Zhi

Citation:

First-principle study on effects of Zn-doping on electronic structure, magnetism and martensitic transformation of Heusler type MSMAs Ni2FeGa1–xZnx (x = 0–1)

Sun Kai-Chen, Liu Shuang, Gao Rui-Rui, Shi Xiang-Yu, Liu He-Yan, Luo Hong-Zhi
PDF
HTML
Get Citation
  • The magnetic shape memory alloys (MSMAs) have both martensitic transformation and ferromagnetism in the same material, thus external magnetic field can be used to induce/control the phase transformation or the reorientation of martensite variant. MSMAs have received considerable attention for their interesting properties and wide applications in different fields. For practical applications, the martensitic transformation temperature TM is an important factor and a high TM is preferable. Recently, Zn-doping has been found to be a possible way to elevate the value of TM of Ni-Mn based MSMA, but this effect on other kinds of MSMAs is not very clear yet. Heusler alloy Ni2FeGa is a typical MSMA with unique properties, however, its TM is relatively low. So it can be meaningful to find possible ways to increase its phase transition temperature. In this paper, the influences of Zn-doping on the electronic structure, martensitic transformation and magnetic properties of Heusler-type magnetic shape memory alloy Ni2FeGa are investigated by first-principle calculations. Total energy calculation and charge density difference indicate that Zn atom prefers to occupy the Ga (D) site when substituting for Ga in Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1). This main-group-element-like behavior is related to the closed 3d shell of Zn. Due to the similar atomic radii of Ga and Zn, Zn-doping does not lead the lattice constant to change greatly. The variation of the energy difference ΔEM between the martensite and austenite with Zn content increasing is calculated, and the result shows that ΔEM increases with Zn-doping increasing, and thus conducing to increasing the stability of the martensite phase and to evaluating the transformation temperature TM in Ni2FeGa1–xZnx. This trend can be explained by the Jahn-Teller effect observed in the DOS structure. The Zn-doping does not change the magnetic structure of Ni2FeGa. A ferromagnetic coupling between Fe spin moment and Ni spin moment can be observed within the whole range studied. The calculated total spin moment increases with Zn content increasing. The variation of formation energy Ef with Zn-doping is investigated. In Ni2FeGa1–xZnx a negative Ef is retained within the whole range studied, though it increases slightly with the doping of Zn. It is also found that the Zn-doping can increase the stability of L21 Heusler phase in Ni2FeGa1–xZnx and suppress the formation of the FCC L12 phase.
      Corresponding author: Luo Hong-Zhi, luo_hongzhi@hebut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. E2018202097, E2019202143)
    [1]

    Dunand D C, Müllner P 2011 Adv. Mater. 23 216Google Scholar

    [2]

    Gottschall T, Skokov K P, Scheibel F, Acet M, Ghorbani Zavareh M, Skourski Y, Wosnitza J, Farle M, Gutfleisch O 2016 Phys. Rev. Appl. 5 024013Google Scholar

    [3]

    Ghosh S, Ghosh A, Mandal K 2018 J. Alloys Compd. 746 200Google Scholar

    [4]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O’Handley R C 1996 Appl. Phys. Lett. 69 1966Google Scholar

    [5]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X 2003 Appl. Phys. Lett. 82 424Google Scholar

    [6]

    Karaca H E, Karaman I, Lagoudas D C, Maier H J, Chumlyakov Y I 2003 Scr. Mater. 49 831Google Scholar

    [7]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957Google Scholar

    [8]

    Omori T, Watanabe K, Umetsu R, Kainuma R, Ishida K 2009 Appl. Phys. Lett. 95 082508Google Scholar

    [9]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295Google Scholar

    [10]

    Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504Google Scholar

    [11]

    Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X, Du Y W 2008 J. Appl. Phys. 104 053906Google Scholar

    [12]

    Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥 2020 69 058102Google Scholar

    Algethami O A, Li T G, Liu Z H, Ma X Q 2020 Acta Phys. Sin. 69 058102Google Scholar

    [13]

    Zhang H H, Qian M F, Zhang X X, Wei L S, Cao F Y, Xing D W, Cui X P, Sun J F, Geng L 2016 J. Alloys Compd. 689 481Google Scholar

    [14]

    Luo H Z, Meng F B, Jiang Q X, Liu H Y, Liu E K, Wu G H, Wang Y X 2010 Scr. Mater. 63 569Google Scholar

    [15]

    Barton L S, Lazott R T, Marsten E R 2014 J. Appl. Phys. 115 17A908Google Scholar

    [16]

    Ni Z N, Guo X M, Li Q S, Liang Z Y, Luo H Z, Meng F B 2018 J. Magn. Magn. Mater. 464 65Google Scholar

    [17]

    Janovec J, Straka L, Sozinov A, Heczko O, Zelený M 2020 Mater. Res. Express 7 026101

    [18]

    Ghotbi Varzaneh A, Kameli P, Abdolhosseini Sarsari I, Ghorbani Zavareh M, Salazar M C, Amiri T, Skourski Y, Luo J L, Etsell T H, Chernenko V A 2020 Phys. Rev. B 101 134403Google Scholar

    [19]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1065

    [20]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507

    [24]

    Zhang R F, Veprek S, Argon A S 2008 Phys. Rev. B 77 172103Google Scholar

    [25]

    Gilleßen M, Dronskowski R 2010 J. Comput. Chem. 31 612

    [26]

    Zhang Y J, Wang W H, Zhang H G, Liu E K, Ma R S, Wu G H 2013 Physica B 420 86Google Scholar

    [27]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverría J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [28]

    赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械 2012 61 213102Google Scholar

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102Google Scholar

    [29]

    Wollmann L, Chadov S, Kübler J, Felser C 2011 Phys. Rev. B 92 064417

    [30]

    Paul S, Ghosh S 2011 J. Appl. Phys. 110 063523Google Scholar

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139Google Scholar

    [32]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406Google Scholar

    [33]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Mater. Sci. Forum 684 1Google Scholar

    [34]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Gao L, Parkin S S P, Felser C 2012 Adv. Mater. 24 6283Google Scholar

    [35]

    Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B, Parkin S S P 2017 Phys. Rev. Appl. 7 034022Google Scholar

    [36]

    Brown P J, Bargawi A Y, Crangle J, Neumann K U, Ziebeck K R A 1999 J. Phys. Condens. Matter 11 4715Google Scholar

    [37]

    Barman S R, Banik S, Shukla A K, Kamal C, Chakrabart A 2007 EPL 80 57002Google Scholar

    [38]

    Soykan C, Özdemir Kart S, Sevik C, Çağın T 2014 J. Alloys Compd. 611 225Google Scholar

  • 图 1  计算得到的Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1)合金总能量与晶格常数的关系曲线, 其中Zn(C)和Zn(D)分别表示Zn进入C和D晶位

    Figure 1.  Calculated total energies of Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1) as functions of lattice constant. Here Zn (C) and Zn (D) indicate that Zn enters the C and D sites, respectively.

    图 2  Ni2FeZn合金XA(左)和L21(右)结构在(110)面上的差分电荷密度

    Figure 2.  The charge density difference on the (110) plane of Ni2FeZn alloy with XA (left) and L21 (right) structures.

    图 3  Ni2FeGa1–xZnx中马氏体和奥氏体相能量差ΔEMc/a比值的变化关系. 在图中, 零点对应于每种合金的立方奥氏体能量(c/a = 1)

    Figure 3.  Variation of the energy difference ΔEM between the martensitic and austenitic phase with the c/a ratio in Ni2FeGa1–xZnx. Here the zero point corresponds to the cubic austenite (c/a = 1) of each alloy.

    图 4  Ni2FeGa1–xZnx奥氏体和马氏体相总态密度的对比

    Figure 4.  Comparison between the total DOS of austenitic and martensitic type Ni2FeGa1–xZnx.

    图 5  Ni2FeGa, Ni2FeGa0.5Zn0.5和Ni2FeZn在L21和L12结构下的总能量与晶胞体积的函数关系. 图中ΔE表示L12和L21相之间的能量差

    Figure 5.  The calculated total energies as functions of cell volume for Ni2FeGa, Ni2FeGa0.5Zn0.5 and Ni2FeZn with L21 and L12 structures. Here ΔE is the energy difference between the L12 and L21 phases.

    图 6  L21和L12型Ni2FeGa1–xZnx (x = 0, 0.5, 1.0)的总态密度对比

    Figure 6.  The total DOS of L21 and L12 type of Ni2FeGa1–xZnx (x = 0, 0.5, 1.0).

    表 1  计算得到的Ni2FeGa1–xZnx(x = 0, 0.25, 0.5, 0.75, 1)合金立方奥氏体相的平衡晶格常数a, 形成能Ef和磁性参数

    Table 1.  The calculated equilibrium lattice constant a, formation energy Ef and magnetic properties of Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1) alloys in cubic austenitic state.

    x0.000.250.50.751.00
    a5.765.765.755.745.74
    Ef/(eV·f.u.–1)–0.75–0.64–0.54–0.43–0.34
    Mt
    B/f.u.)
    3.403.503.613.723.82
    MNi/μB0.160.200.250.300.35
    MFe/μB3.113.133.153.163.17
    MGa/μB–0.03–0.02–0.010.00
    MZn/μB–0.06–0.06–0.05–0.04
    DownLoad: CSV

    表 2  计算得到的Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1)合金在马氏体状态下的马氏体与奥氏体之间能量差ΔEM, c/a比值和磁性参数

    Table 2.  The calculated energy difference ΔEM between the martensite and austenite, c/a ratio and magnetic properties of Ni2FeGa1–xZnx (x = 0, 0.25, 0.5, 0.75, 1) alloys in tetragonal martensitic state.

    x0.000.250.50.751.00
    ΔEM/(eV·f.u.–1)–0.110–0.119–0.128–0.144–0.151
    c/a1.361.361.341.331.32
    Mt/(μB·f.u.–1)3.383.483.633.733.85
    MNi/μB0.280.320.350.380.41
    MFe/μB2.923.003.023.063.11
    MGa/μB–0.11–0.10–0.08–0.07
    MZn/μB–0.13–0.11–0.10–0.09
    DownLoad: CSV
    Baidu
  • [1]

    Dunand D C, Müllner P 2011 Adv. Mater. 23 216Google Scholar

    [2]

    Gottschall T, Skokov K P, Scheibel F, Acet M, Ghorbani Zavareh M, Skourski Y, Wosnitza J, Farle M, Gutfleisch O 2016 Phys. Rev. Appl. 5 024013Google Scholar

    [3]

    Ghosh S, Ghosh A, Mandal K 2018 J. Alloys Compd. 746 200Google Scholar

    [4]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O’Handley R C 1996 Appl. Phys. Lett. 69 1966Google Scholar

    [5]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X 2003 Appl. Phys. Lett. 82 424Google Scholar

    [6]

    Karaca H E, Karaman I, Lagoudas D C, Maier H J, Chumlyakov Y I 2003 Scr. Mater. 49 831Google Scholar

    [7]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957Google Scholar

    [8]

    Omori T, Watanabe K, Umetsu R, Kainuma R, Ishida K 2009 Appl. Phys. Lett. 95 082508Google Scholar

    [9]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295Google Scholar

    [10]

    Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504Google Scholar

    [11]

    Han Z D, Wang D H, Zhang C L, Xuan H C, Zhang J R, Gu B X, Du Y W 2008 J. Appl. Phys. 104 053906Google Scholar

    [12]

    Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥 2020 69 058102Google Scholar

    Algethami O A, Li T G, Liu Z H, Ma X Q 2020 Acta Phys. Sin. 69 058102Google Scholar

    [13]

    Zhang H H, Qian M F, Zhang X X, Wei L S, Cao F Y, Xing D W, Cui X P, Sun J F, Geng L 2016 J. Alloys Compd. 689 481Google Scholar

    [14]

    Luo H Z, Meng F B, Jiang Q X, Liu H Y, Liu E K, Wu G H, Wang Y X 2010 Scr. Mater. 63 569Google Scholar

    [15]

    Barton L S, Lazott R T, Marsten E R 2014 J. Appl. Phys. 115 17A908Google Scholar

    [16]

    Ni Z N, Guo X M, Li Q S, Liang Z Y, Luo H Z, Meng F B 2018 J. Magn. Magn. Mater. 464 65Google Scholar

    [17]

    Janovec J, Straka L, Sozinov A, Heczko O, Zelený M 2020 Mater. Res. Express 7 026101

    [18]

    Ghotbi Varzaneh A, Kameli P, Abdolhosseini Sarsari I, Ghorbani Zavareh M, Salazar M C, Amiri T, Skourski Y, Luo J L, Etsell T H, Chernenko V A 2020 Phys. Rev. B 101 134403Google Scholar

    [19]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1065

    [20]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kandpal H C, Fecher G H, Felser C 2007 J. Phys. D: Appl. Phys. 40 1507

    [24]

    Zhang R F, Veprek S, Argon A S 2008 Phys. Rev. B 77 172103Google Scholar

    [25]

    Gilleßen M, Dronskowski R 2010 J. Comput. Chem. 31 612

    [26]

    Zhang Y J, Wang W H, Zhang H G, Liu E K, Ma R S, Wu G H 2013 Physica B 420 86Google Scholar

    [27]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverría J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [28]

    赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械 2012 61 213102Google Scholar

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102Google Scholar

    [29]

    Wollmann L, Chadov S, Kübler J, Felser C 2011 Phys. Rev. B 92 064417

    [30]

    Paul S, Ghosh S 2011 J. Appl. Phys. 110 063523Google Scholar

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139Google Scholar

    [32]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406Google Scholar

    [33]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Mater. Sci. Forum 684 1Google Scholar

    [34]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Gao L, Parkin S S P, Felser C 2012 Adv. Mater. 24 6283Google Scholar

    [35]

    Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B, Parkin S S P 2017 Phys. Rev. Appl. 7 034022Google Scholar

    [36]

    Brown P J, Bargawi A Y, Crangle J, Neumann K U, Ziebeck K R A 1999 J. Phys. Condens. Matter 11 4715Google Scholar

    [37]

    Barman S R, Banik S, Shukla A K, Kamal C, Chakrabart A 2007 EPL 80 57002Google Scholar

    [38]

    Soykan C, Özdemir Kart S, Sevik C, Çağın T 2014 J. Alloys Compd. 611 225Google Scholar

  • [1] Jin Miao, Bai Jing, Xu Jia-Xin, Jiang Xin-Jun, Zhang Yu, Liu Xin, Zhao Xiang, Zuo Liang. Effects of Fe doping on Martensitic Transformation and magnetic properties of Ni-Mn-Ti All-d-metal Heusler Alloy. Acta Physica Sinica, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] Algethami Obaidallah A, Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties, and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [3] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [4] Xin Yue-Peng, Ma Yue-Xing, Hao Hong-Yue, Meng Fan-Bin, Liu He-Yan, Luo Hong-Zhi. Site preference in isoelectronic Heusler alloy Fe2RuSi. Acta Physica Sinica, 2016, 65(14): 147102. doi: 10.7498/aps.65.147102
    [5] Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao. Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy. Acta Physica Sinica, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [6] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] Wang Xiao-Tian, Dai Xue-Fang, Jia Hong-Ying, Wang Li-Ying, Liu Ran, Li Yong, Liu Xiao-Chuang, Zhang Xiao-Ming, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. The band inversion and topological insulating state of Heusler alloys:X2RuPb (X=Lu, Y). Acta Physica Sinica, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [8] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [9] Zhang Yu-Jie, Liu En-Ke, Zhang Hong-Guo, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng. Martensitic transformation and magnetic properties in Ga-doped MMX alloy MnNiGe1-x Gax (x=00.30). Acta Physica Sinica, 2013, 62(19): 197501. doi: 10.7498/aps.62.197501
    [10] Luo Li-Jin, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai, Zhou Peng-Xia, Jiang Xue-Fan. A band Jahn-Teller effect in the martensitic phase transition of the Heusler alloy Mn2NiGe. Acta Physica Sinica, 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [11] Zhu Wei, Liu En-Ke, Zhang Chang-Zai, Qin Yuan-Bin, Luo Hong-Zhi, Wang Wen-Hong, Du Zhi-Wei, Li Jian-Qi, Wu Guang-Heng. Magnetic property and structure of Heusler alloy: Fe2CrGa. Acta Physica Sinica, 2012, 61(2): 027502. doi: 10.7498/aps.61.027502
    [12] Song Rui-Ning, Zhu Wei, Liu En-Ke, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Li Xiang, Wu Guang-Heng. Effect of internal stress on sructure, martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, 2012, 61(2): 027501. doi: 10.7498/aps.61.027501
    [13] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [14] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [15] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [16] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [17] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [18] Dai Xue-Fang, Liu He-Yan, Yan Li-Qin, Qu Jing-Ping, Li Yang-Xian, Chen Jing-Lan, Wu Guang-Heng. Structure and martensitic transformation of the CoNiZ alloys. Acta Physica Sinica, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [19] Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, Chai Wei, Zheng Yu-Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [20] Gao Shu-Xia, Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, CaiWei, ZhengYu Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
Metrics
  • Abstract views:  4428
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2020
  • Accepted Date:  05 February 2021
  • Available Online:  28 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回
Baidu
map