-
At present, owing to the inherent limitations of the material characteristics of Si based semiconductor materials, Si based semiconductors are facing more and more challenges in meeting the performance requirements of the rapidly developing modern power electronic technologies used in semiconductor devices. As a new generation of semiconductor material, SiC has significant performance advantages, but it is difficult to process the SiC wafers with high-quality and high-efficiency in their industrial application. Reviewing the research progress of ultra-precision machining technology of SiC in recent years, we introduce plasma oxidation modification based highly efficient polishing technology of SiC in this paper. The material removal mechanism, typical device, modification process, and polishing result of this technology are analyzed. The analysis shows that the plasma oxidation modification possesses high removal efficiency and atomically flat surfaces without surface or subsurface damages. Furthermore, aiming at step-terrace structures produced during SiC surface processing with different polishing technologies, the generation mechanism and control strategy of periodic atomic layer step-terrace structures are discussed. Finally, the development and challenge of plasma-assisted polishing technology are prospected.
-
Keywords:
- single crystal SiC /
- atomic and close-to-atomic scale manufacturing /
- plasma /
- surface modification
[1] Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar
[2] Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar
[3] He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar
[4] Mohammed M 2020 Plasmonics 15 1989Google Scholar
[5] Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar
[6] Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar
[7] Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar
[8] Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar
[9] Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar
[10] Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33
[11] Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar
[12] Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar
[13] Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar
[14] Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar
[15] Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar
[16] Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar
[17] Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar
[18] Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar
[19] Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar
[20] Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar
[21] Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar
[22] Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333
[23] Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar
[24] Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar
[25] Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar
[26] Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar
[27] Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar
[28] 路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148
Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148
[29] Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1
[30] Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar
[31] Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar
[32] Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar
[33] Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar
[34] Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166
[35] Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar
[36] Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar
[37] Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar
[38] Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar
[39] Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar
[40] Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar
[41] Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar
[42] Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar
[43] Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar
[44] Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar
[45] Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)
[46] Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar
[47] Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar
[48] Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar
[49] Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1
[50] 张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar
Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar
[51] Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar
[52] Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar
[53] Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05
[54] Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar
[55] Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar
[56] Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar
[57] Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar
[58] Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar
[59] Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar
[60] Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835
[61] Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775
[62] Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar
[63] Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar
[64] Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar
[65] Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar
[66] Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar
[67] Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar
[68] Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar
[69] Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar
[70] Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar
[71] Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar
[72] Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar
[73] Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar
[74] Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar
[75] Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar
[76] Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar
[77] Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar
[78] Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar
[79] Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar
[80] Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar
[81] Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar
[82] Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar
[83] Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24
[84] Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar
[85] Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar
[86] Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar
-
图 7 CMP加工SiC的AFM图(PV表示最高和最低处的差值; RMS是均方根)[45] (a) 金刚石抛光液(PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3抛光液(PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2抛光液(PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2抛光液(PV, 0.68 nm; RMS, 0.08 nm)
Figure 7. AFM images of CMP-processed SiC (PV, peak to valley; RMS, root mean square)[45]: (a) Diamond slurry (PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3 slurry (PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2 slurry (PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2 slurry (PV, 0.68 nm; RMS, 0.08 nm).
图 8 加工后4H-SiC的WLI测量结果[40] (a)不使用等离子体改性, 而仅以CeO2抛光后表面(PV, 5.49 nm; RMS, 0.57 nm); (b) PAP技术加工后表面(PV, 1.89 nm; RMS, 0.28 nm)
Figure 8. WLI images of processed 4H-SiC wafer[40]: (a) The surface polished by ceria abrasive without plasma irradiation (PV, 5.49 nm; RMS, 0.57 nm); (b) the surface processed by PAP (PV, 1.89 nm; RMS, 0.28 nm).
图 12 多次进行等离子体辐照和HF浸泡后的4H-SiC表面WLI图[48] (a)金刚石磨料抛光获得的初始表面(PV, 11.14 nm; RMS, 1.80 nm); (b)第一次处理后的结果(PV, 6.65 nm; RMS, 1.02 nm); (c)第二次处理后的结果(PV, 8.39 nm; RMS, 2.83 nm); (d)第三次处理后的结果(PV, 2.45 nm; RMS, 0.45 nm)
Figure 12. WLI images of processed 4H-SiC surfaces[48]: (a) Diamond lapped surface (PV, 11.14 nm; RMS, 1.80 nm); (b) after the first cycle of plasma oxidation and HF dipping (PV, 6.65 nm; RMS, 1.02 nm); (c) after the second cycle (PV, 8.39 nm; RMS, 2.83 nm); (d) after the third cycle (PV, 2.45 nm; RMS, 0.45 nm).
图 16 4H-SiC台阶状结构形成机制[65] (a)化学改性占主导机制, 产生a-b-a*-b*型结构; (b)化学改性作用与磨粒物理去除作用相当, 产生a-b型结构; (c)磨粒物理去除作用占主导机制, 形成a-a型结构
Figure 16. Probable formation mechanism of step-terrace structure of 4H-SiC[65]: (a) Surface modification was dominant, resulting in the formation of the a-b-a*-b* type step-terrace structure; (b) physical removal was comparable with surface modification, resulting in the formation of the a-b type step-terrace structure; (c) physical removal was dominant, resulting in the formation of the a-a type step-terrace structure.
图 17 在抛光盘转速不同情况下, 抛光后的SiC表面的不同台阶状结构的AFM图[65] (a) 500 r/min; (b) 1500 r/min; (c) 2500 r/min
Figure 17. AFM images of different step structures on SiC surface after polishing with different polishing speed of (a) 500, (b) 1500, (c) 2500 r/min.
-
[1] Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar
[2] Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar
[3] He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar
[4] Mohammed M 2020 Plasmonics 15 1989Google Scholar
[5] Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar
[6] Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar
[7] Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar
[8] Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar
[9] Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar
[10] Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33
[11] Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar
[12] Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar
[13] Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar
[14] Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar
[15] Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar
[16] Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar
[17] Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar
[18] Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar
[19] Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar
[20] Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar
[21] Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar
[22] Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333
[23] Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar
[24] Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar
[25] Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar
[26] Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar
[27] Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar
[28] 路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148
Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148
[29] Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1
[30] Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar
[31] Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar
[32] Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar
[33] Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar
[34] Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166
[35] Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar
[36] Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar
[37] Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar
[38] Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar
[39] Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar
[40] Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar
[41] Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar
[42] Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar
[43] Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar
[44] Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar
[45] Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)
[46] Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar
[47] Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar
[48] Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar
[49] Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1
[50] 张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar
Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar
[51] Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar
[52] Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar
[53] Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05
[54] Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar
[55] Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar
[56] Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar
[57] Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar
[58] Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar
[59] Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar
[60] Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835
[61] Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775
[62] Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar
[63] Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar
[64] Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar
[65] Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar
[66] Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar
[67] Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar
[68] Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar
[69] Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar
[70] Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar
[71] Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar
[72] Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar
[73] Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar
[74] Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar
[75] Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar
[76] Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar
[77] Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar
[78] Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar
[79] Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar
[80] Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar
[81] Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar
[82] Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar
[83] Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24
[84] Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar
[85] Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar
[86] Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar
Catalog
Metrics
- Abstract views: 11567
- PDF Downloads: 449
- Cited By: 0