Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma-assisted polishing for atomic surface fabrication of single crystal SiC

Ji Jian-Wei Kazuya Yamamura Deng Hui

Citation:

Plasma-assisted polishing for atomic surface fabrication of single crystal SiC

Ji Jian-Wei, Kazuya Yamamura, Deng Hui
PDF
HTML
Get Citation
  • At present, owing to the inherent limitations of the material characteristics of Si based semiconductor materials, Si based semiconductors are facing more and more challenges in meeting the performance requirements of the rapidly developing modern power electronic technologies used in semiconductor devices. As a new generation of semiconductor material, SiC has significant performance advantages, but it is difficult to process the SiC wafers with high-quality and high-efficiency in their industrial application. Reviewing the research progress of ultra-precision machining technology of SiC in recent years, we introduce plasma oxidation modification based highly efficient polishing technology of SiC in this paper. The material removal mechanism, typical device, modification process, and polishing result of this technology are analyzed. The analysis shows that the plasma oxidation modification possesses high removal efficiency and atomically flat surfaces without surface or subsurface damages. Furthermore, aiming at step-terrace structures produced during SiC surface processing with different polishing technologies, the generation mechanism and control strategy of periodic atomic layer step-terrace structures are discussed. Finally, the development and challenge of plasma-assisted polishing technology are prospected.
      Corresponding author: Deng Hui, dengh@sustech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52035009, 52005243) and the International Cooperation from the Science and Technology Innovation Committee of Shenzhen Municipality, Shenzhen, China (Grant No. GJHZ20180928155412525)
    [1]

    Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar

    [2]

    Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar

    [3]

    He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar

    [4]

    Mohammed M 2020 Plasmonics 15 1989Google Scholar

    [5]

    Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar

    [6]

    Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar

    [7]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar

    [8]

    Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar

    [9]

    Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar

    [10]

    Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33

    [11]

    Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar

    [12]

    Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar

    [13]

    Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar

    [14]

    Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar

    [15]

    Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar

    [16]

    Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar

    [17]

    Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar

    [18]

    Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar

    [19]

    Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar

    [20]

    Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar

    [21]

    Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar

    [22]

    Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333

    [23]

    Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar

    [24]

    Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar

    [25]

    Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar

    [26]

    Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar

    [27]

    Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar

    [28]

    路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148

    Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148

    [29]

    Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1

    [30]

    Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar

    [31]

    Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar

    [32]

    Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar

    [33]

    Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar

    [34]

    Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166

    [35]

    Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar

    [36]

    Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar

    [37]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [38]

    Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar

    [39]

    Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar

    [40]

    Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar

    [41]

    Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar

    [42]

    Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar

    [43]

    Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar

    [44]

    Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar

    [45]

    Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)

    [46]

    Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar

    [47]

    Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar

    [48]

    Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar

    [49]

    Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1

    [50]

    张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar

    Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar

    [51]

    Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar

    [52]

    Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar

    [53]

    Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05

    [54]

    Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar

    [55]

    Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar

    [56]

    Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar

    [57]

    Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar

    [58]

    Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar

    [59]

    Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar

    [60]

    Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835

    [61]

    Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775

    [62]

    Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar

    [63]

    Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar

    [64]

    Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar

    [65]

    Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar

    [66]

    Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar

    [67]

    Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar

    [68]

    Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar

    [69]

    Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [70]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [71]

    Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [72]

    Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar

    [73]

    Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar

    [74]

    Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar

    [75]

    Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar

    [76]

    Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar

    [77]

    Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar

    [78]

    Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar

    [79]

    Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar

    [80]

    Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar

    [81]

    Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar

    [82]

    Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar

    [83]

    Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24

    [84]

    Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar

    [85]

    Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar

    [86]

    Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar

  • 图 1  PAP技术原理图[45]

    Figure 1.  Schematic diagram of PAP[45].

    图 2  PAP加工装置 (a)装置示意图[40]; (b)装置实物图[45]; (c)抛光垫截面图及SEM图[45]

    Figure 2.  PAP machine: (a) The schematic view[40]; (b) photograph of the apparatus[45]; (c) cross-sectional structure and SEM image of the polishing film[45].

    图 3  等离子体OES谱[45] (a)反应气体为水蒸气; (b)反应气体为O2

    Figure 3.  OES spectra[45] of plasma: (a) Water vapor contained plasma; (b) oxygen contained plasma.

    图 4  球盘式摩擦磨损实验[45] (a)实验装置示意图; (b)实验结果

    Figure 4.  Ball-on-disc wear test[45]: (a) Schematic view of the experimental apparatus; (b) the experimental results.

    图 5  以水蒸气为反应气体的等离子体改性后表面XTEM图[48]

    Figure 5.  XTEM image of surface irradiated by water vapor contained plasma[48].

    图 6  改性前后4H-SiC(0001)纳米压痕实验[49] (a)载荷位移曲线; (b)计算获得的硬度值

    Figure 6.  Nano-indentation tests of 4H-SiC(0001) before and after surface modification[49]: (a) Load-displacement curve; (b) hardness calculated from measured data.

    图 7  CMP加工SiC的AFM图(PV表示最高和最低处的差值; RMS是均方根)[45] (a) 金刚石抛光液(PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3抛光液(PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2抛光液(PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2抛光液(PV, 0.68 nm; RMS, 0.08 nm)

    Figure 7.  AFM images of CMP-processed SiC (PV, peak to valley; RMS, root mean square)[45]: (a) Diamond slurry (PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3 slurry (PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2 slurry (PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2 slurry (PV, 0.68 nm; RMS, 0.08 nm).

    图 8  加工后4H-SiC的WLI测量结果[40] (a)不使用等离子体改性, 而仅以CeO2抛光后表面(PV, 5.49 nm; RMS, 0.57 nm); (b) PAP技术加工后表面(PV, 1.89 nm; RMS, 0.28 nm)

    Figure 8.  WLI images of processed 4H-SiC wafer[40]: (a) The surface polished by ceria abrasive without plasma irradiation (PV, 5.49 nm; RMS, 0.57 nm); (b) the surface processed by PAP (PV, 1.89 nm; RMS, 0.28 nm).

    图 9  不同加工阶段的SiC样品AFM图[45] (a)加工前SiC表面; (b) PAP技术加工过程中SiC表面; (c) PAP技术最终加工结果

    Figure 9.  AFM images of the surface of SiC substrate during different polishing stages[45]: (a) The unprocessed SiC surface; (b) SiC surface at the in-process stage of PAP; (c) SiC surface at the final stage of PAP.

    图 10  PAP技术加工后4H-SiC样品XTEM图[49] (a) 低分辨率图像; (b) 高分辨率图像

    Figure 10.  (a) Low and (b) high resolution XTEM image of 4H-SiC surface processed by PAP[49].

    图 11  RHEED测量结果[40] (a) PAP加工后样品的RHEED图; (b)加工前后两样品的晶格常数

    Figure 11.  Measurement results of RHEED[40]: (a) RHEED pattern of the SiC wafer processed by PAP; (b) lattice constants calculated from the RHEED pattern.

    图 12  多次进行等离子体辐照和HF浸泡后的4H-SiC表面WLI图[48] (a)金刚石磨料抛光获得的初始表面(PV, 11.14 nm; RMS, 1.80 nm); (b)第一次处理后的结果(PV, 6.65 nm; RMS, 1.02 nm); (c)第二次处理后的结果(PV, 8.39 nm; RMS, 2.83 nm); (d)第三次处理后的结果(PV, 2.45 nm; RMS, 0.45 nm)

    Figure 12.  WLI images of processed 4H-SiC surfaces[48]: (a) Diamond lapped surface (PV, 11.14 nm; RMS, 1.80 nm); (b) after the first cycle of plasma oxidation and HF dipping (PV, 6.65 nm; RMS, 1.02 nm); (c) after the second cycle (PV, 8.39 nm; RMS, 2.83 nm); (d) after the third cycle (PV, 2.45 nm; RMS, 0.45 nm).

    图 13  等离子体辐照和HF刻蚀处理之后的SiC表面AFM图[48] (PV, 0.95 nm; RMS, 0.11 nm)

    Figure 13.  AFM image of the SiC sueface processed by plasma oxidation followed by HF dipping[48] (PV, 0.95 nm; RMS, 0.11 nm).

    图 14  等离子体辐照后4H-SiC样品表面的XTEM图[45]

    Figure 14.  XTEM images of water vapor contained plasma irradiated 4H-SiC surface[45].

    图 15  4H-SiC(0001)表面台阶结构的键结构(观察方向[1120])[64]

    Figure 15.  Bond configuration of step-terrace structure on a 4H-SiC(0001) surface viewed from the [1120] direction[64].

    图 16  4H-SiC台阶状结构形成机制[65] (a)化学改性占主导机制, 产生a-b-a*-b*型结构; (b)化学改性作用与磨粒物理去除作用相当, 产生a-b型结构; (c)磨粒物理去除作用占主导机制, 形成a-a型结构

    Figure 16.  Probable formation mechanism of step-terrace structure of 4H-SiC[65]: (a) Surface modification was dominant, resulting in the formation of the a-b-a*-b* type step-terrace structure; (b) physical removal was comparable with surface modification, resulting in the formation of the a-b type step-terrace structure; (c) physical removal was dominant, resulting in the formation of the a-a type step-terrace structure.

    图 17  在抛光盘转速不同情况下, 抛光后的SiC表面的不同台阶状结构的AFM图[65] (a) 500 r/min; (b) 1500 r/min; (c) 2500 r/min

    Figure 17.  AFM images of different step structures on SiC surface after polishing with different polishing speed of (a) 500, (b) 1500, (c) 2500 r/min.

    Baidu
  • [1]

    Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar

    [2]

    Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar

    [3]

    He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar

    [4]

    Mohammed M 2020 Plasmonics 15 1989Google Scholar

    [5]

    Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar

    [6]

    Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar

    [7]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar

    [8]

    Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar

    [9]

    Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar

    [10]

    Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33

    [11]

    Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar

    [12]

    Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar

    [13]

    Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar

    [14]

    Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar

    [15]

    Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar

    [16]

    Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar

    [17]

    Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar

    [18]

    Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar

    [19]

    Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar

    [20]

    Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar

    [21]

    Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar

    [22]

    Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333

    [23]

    Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar

    [24]

    Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar

    [25]

    Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar

    [26]

    Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar

    [27]

    Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar

    [28]

    路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148

    Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148

    [29]

    Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1

    [30]

    Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar

    [31]

    Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar

    [32]

    Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar

    [33]

    Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar

    [34]

    Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166

    [35]

    Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar

    [36]

    Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar

    [37]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [38]

    Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar

    [39]

    Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar

    [40]

    Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar

    [41]

    Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar

    [42]

    Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar

    [43]

    Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar

    [44]

    Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar

    [45]

    Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)

    [46]

    Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar

    [47]

    Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar

    [48]

    Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar

    [49]

    Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1

    [50]

    张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar

    Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar

    [51]

    Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar

    [52]

    Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar

    [53]

    Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05

    [54]

    Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar

    [55]

    Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar

    [56]

    Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar

    [57]

    Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar

    [58]

    Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar

    [59]

    Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar

    [60]

    Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835

    [61]

    Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775

    [62]

    Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar

    [63]

    Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar

    [64]

    Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar

    [65]

    Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar

    [66]

    Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar

    [67]

    Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar

    [68]

    Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar

    [69]

    Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [70]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [71]

    Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [72]

    Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar

    [73]

    Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar

    [74]

    Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar

    [75]

    Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar

    [76]

    Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar

    [77]

    Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar

    [78]

    Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar

    [79]

    Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar

    [80]

    Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar

    [81]

    Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar

    [82]

    Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar

    [83]

    Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24

    [84]

    Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar

    [85]

    Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar

    [86]

    Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Zhao Fan-Tao, Song Jian, Zhang Jin-Shuo, Qi Liang-Wen, Zhao Chong-Xiao, Wang De-Zhen. Effects of magnetized coaxial plasma gun operation on spheromak formation and plasma characteristics. Acta Physica Sinica, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [3] Zhang Hai-Bao, Chen Qiang. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Physica Sinica, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [4] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan, Zhai Ji-Wei. Effects of suface hydroxylated strontium titanate nanofibers on dielectric and energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [6] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [8] Li Zong-Bao, Wang Xia, Zhou Rui-Xue, Wang Ying, Li Yong. Surface modification in Cu-Ag codoped TiO2: the first-principle calculation. Acta Physica Sinica, 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [9] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Unbiased solid surface charging research inplasma environment. Acta Physica Sinica, 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [10] Cao He-Fei, Liu Shang-He, Sun Yong-Wei, Yuan Qing-Yun. Characteristics plasma environment isolated conductor surface charging time domain. Acta Physica Sinica, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [11] Dong Tai-Yuan, Ye Kun-Tao, Liu Wei-Qing. The current status of surface wave plasma source development. Acta Physica Sinica, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [14] Meng Liang, Zhang Jie, Zhu Xiao-Dong, Wen Xiao-Hui, Ding Fang. Formations of conic surfaces on diamond films induced by hot filament assisted double-bias hydrogen plasma. Acta Physica Sinica, 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [15] Gu Wei-Chao, Lü Guo-Hua, Chen Huan, Chen Guang-Liang, Feng Wen-Ran, Zhang Gu-Ling, Yang Si-Ze. Plasma electrolytic deposition on aluminum tubes. Acta Physica Sinica, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [16] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [18] Man Bao-Yuan, Zhang Yun-Hai, Lü Guo-Hua, Liu Ai-Hua, Zhang Qing-Gang, Guzman L., Adami M., Miotello A.. Study on surface modification of polytetrafluoroethylene by N+ ion implantation. Acta Physica Sinica, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  11567
  • PDF Downloads:  449
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2020
  • Accepted Date:  22 December 2020
  • Available Online:  10 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回
Baidu
map