Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure

Xu Da Zhong Qing Cao Wen-Hui Wang Xue-Shen Wang Shi-Jian Li Jin-Jin Liu Jian-She Chen Wei

Citation:

A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure

Xu Da, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Wang Shi-Jian, Li Jin-Jin, Liu Jian-She, Chen Wei
PDF
HTML
Get Citation
  • Superconducting quantum interference device (SQUID) has extremely high magnetic field sensitivity, current sensitivity, and can detect a low-noise weak current signal. The SQUID current sensor has become the only option of the readout of low-noise detector, such as transition-edge sensor (TES). In this paper, a second-order gradiometric cross-coupled SQUID current sensor for TES application is developed. According to the requirements for TES detectors, the structure and various parameters of SQUID current sensor are designed. The SQUID loop, input coil and feedback coil of the SQUID current sensor all use the second-order gradiometric structure. All the couple ways between SQUID loop and input coil or feedback coil adopt cross-coupling mode in different planes, which can effectively weaken the parasitic capacitance. A second-order gradiometric cross-coupled SQUID current sensor based on Nb/Al-AlOx/Nb Josephson junction is successfully fabricated on a silicon wafer by optimizing the process. The properties of the second-order gradiometric cross-coupled SQUID current sensor are measured at liquid helium temperature. The bias current of SQUID is 215 μA when the modulation depth of V-Φ modulation curve is maximum. The maximum modulation peak of SQUID is 31 μV. The flux-to-voltage transfer coefficient of SQUID is 108 μV/Φ0. The input coil current sensitivity is 17 μA/Φ0, the mutual inductance between SQUID loop and input coil is 117 pH. The current sensitivity of feedback coil is 86 μA/Φ0, the mutual inductance between SQUID loop and feedback coil is 23 pH. The second-order gradiometric cross-coupled SQUID current sensor has a white flux noise of 2 μΦ0/$ \sqrt{{\rm{H}}{\rm{z}}} $ and a white current noise of 34 pA/$ \sqrt{{\rm{H}}{\rm{z}}} $ with 1/f corner frequency around 200 Hz. The result of noise level under the condition without magnetic shielding shows that the SQUID current sensor with second-order gradiometric cross-coupled structure has an excellent capability of weakening the environmental electromagnetic interference. In the future, we will further improve the mutual inductance of the second-order gradiometric cross-coupled SQUID current sensor between SQUID loop and input coil, optimize the size and critical current of Josephson junction, in order to improve the input sensitivity of SQUID device, reduce the current noise level and the 1/f corner frequency, and meet more requirements for TES applications.
      Corresponding author: Zhong Qing, zhongq@nim.ac.cn ; Li Jin-Jin, jinjinli@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206105), the National Natural Science Foundation of China (Grant Nos. 61701470, 20161361354), and the National Institute of Metrology China (Grant Nos. AKY1946, AKYZD2012)
    [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (KgaA, Weinheim: Wiley-VCH Verlag GmbH & Co.) pp1−210

    [2]

    Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602Google Scholar

    [3]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [4]

    Jackson B D, Korte P A J, Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, Hartog R, Kiviranta M, Lange G, Leeuwen B J, Macculi C, Ravera L, Trappe N, Weers H, Withington S 2012 IEEE Trans. Terahertz Sci. and Technol. 2 12Google Scholar

    [5]

    Henderson S W, Ahmed Z, Austermann J, Becker D, Bennett D A, Brown D, Chaudhuri S, Cho H M S, D'Ewart J M, Dober B, Duff S M, Dusatko J E, Fatigoni S, Frisch J C, Gard J D, Halpern M, Hilton G C, Hubmayr J, Irwin K D, Karpel E D, Kernasovskiy S S, Kuenstner S E, Kuo C L, Li D, Mates J A B, Reintsema C D, Smith S R, Ullom J, Vale L R, Winkle D D V, Vissers M, Yu C 2018 Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX Texas, United States, June 10−15 2018 p1070819

    [6]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [7]

    Schmidt M, Helversen M, López M, Gericke F, Schlottmann E, Heindel T, Kück S, Reitzenstein S, Beyer J 2018 J. Low Temp. Phys. 193 1243Google Scholar

    [8]

    Irwin K D 2002 Physica C 368 203Google Scholar

    [9]

    Kempf S, Wegner M, Fleischmann A, Gastaldo L, Herrmann F, Papst M, Richter D, Enss C 2017 AIP Adv. 7 015007Google Scholar

    [10]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405Google Scholar

    [11]

    Drung D, Abmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig T 2007 IEEE Trans. Appl. Supercond. 17 699Google Scholar

    [12]

    Stiehl G M, Cho H M, Hilton G C, Irwin K D, Mates J A B, Reintsema C D, Zink B L 2011 IEEE Trans. Appl. Supercond. 21 298Google Scholar

    [13]

    Beyer J, Drung D 2008 Supercond. Sci. Technol. 21 095012Google Scholar

    [14]

    Schurig T 2014 J. Phys. Conf. Ser. 568 032015Google Scholar

    [15]

    Silva-Feaver M, Arnold K, Barron D, Denison E V, Dobbs M, Groh J, Hilton G, Hubmayr J, Irwin K, Lee A, Vale L R 2018 J. Low Temp. Phys. 193 600Google Scholar

    [16]

    Schurig T, Trahms L 2009 IEEE CSC & ESAS European Superconductivity News Forum 3 RN9Google Scholar

    [17]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [18]

    Drung D 2016 IEEE CSC & ESAS European Supercon- ductivity News Forum 10 CR70

    [19]

    SQUID sensors, Magnicon GmbH www.magnicon.com [2021-02-07]

    [20]

    LTS Sensors, STAR Cryoelectronics www.starcryo.com [2021-02-07]

    [21]

    Cantor R, Hall J A, Matlachov A N, Volegov P L 2007 IEEE Trans. Appl. Supercond. 17 672Google Scholar

    [22]

    Kempf S, Ferring A, Fleischmann A, Gastaldo L, Enss C, 2013 Supercond. Sci. Technol. 26 065012Google Scholar

    [23]

    Kempf S, Ferring A, Fleischmann A, Enss C 2015 Supercond. Sci. Technol. 28 045008Google Scholar

    [24]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp Phys 184 389Google Scholar

    [25]

    Zhang X, Zhang G, Wang Y, Rong L, Zhang S, Wu J, Qiu L, Xie X, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503Google Scholar

    [26]

    Kuriki S, Isobe Y, Mizutani Y 1987 J. Appl. Phys. 61 781Google Scholar

    [27]

    Carelli P, Chiaventi L, Leoni R, Pullano M, Spagnolo G S 1991 Clin. Phys. Physiol. Meas. 12 13Google Scholar

    [28]

    Beyer J, Drung D, Peters M, Schurig T, Bandler S R 2009 IEEE Trans. Appl. Supercond. 19 505Google Scholar

    [29]

    Xu D, Li J, Cao W, Liu J, Chen W 2020 Conference on Precision Electromagnetic Measurements Denver, United States, August 24−28 2020 p9191689

    [30]

    Fourie C J, Perold W J 2005 IEEE Trans. Appl. Supercond. 15 300Google Scholar

    [31]

    Drung D, Hinnrichs C, Barthelmess H 2006 Supercond. Sci. Technol. 19 S235Google Scholar

    [32]

    Drung D, Ludwig F, Müller W, Steinhoff U, Trahms L, Koch H, Shen Y Q, Jensen M B, Vase P, Holst T, Freltoft T, Curio G 1996 Appl. Phys. Lett. 68 1421Google Scholar

  • 图 1  (a) SQUID环路示意图; (b) 一阶梯度并联SQUID环路结构示意图; (c) 一阶梯度串联SQUID环路结构示意图; (d) 二阶梯度并联SQUID环路结构示意图

    Figure 1.  Schematic diagrams of (a) SQUID loop, (b) a first-order gradiometric parallel SQUID loop, (c) a first-order gradiometric series SQUID loop, and (d) a second-order gradiometric parallel SQUID loop.

    图 2  二阶梯度交叉耦合SQUID电流传感器扫描电子显微镜图

    Figure 2.  Scanning electron microscope picture of the second-order gradiometric cross-coupled SQUID current sensor.

    图 3  二阶梯度交叉耦合SQUID电流传感器等效电路图

    Figure 3.  Equivalent circuit of the second-order gradiometric cross-coupled SQUID current sensor.

    图 4  二阶梯度交叉耦合SQUID电流传感器的电流-电压曲线

    Figure 4.  Current-voltage curves of the second-order gradiometric cross-coupled SQUID current sensor.

    图 5  二阶梯度交叉耦合SQUID输入线圈的电压-磁通调制曲线

    Figure 5.  Voltage-flux curve for the input coil of the second-order gradiometric cross-coupled SQUID.

    图 6  二阶梯度交叉耦合SQUID反馈线圈的电压-磁通调制曲线

    Figure 6.  Voltage-flux curve for the feedback coil of the second-order gradiometric cross-coupled SQUID.

    图 7  二阶梯度交叉耦合SQUID电流传感器的噪声曲线

    Figure 7.  Noise curves of the second-order gradiometric cross-coupled SQUID current sensor.

    表 1  二阶梯度交叉耦合SQUID电流传感器的设计参数

    Table 1.  Design parameters of the second-order gradiometric cross-coupled SQUID current sensor.

    参数设计值
    约瑟夫森结尺寸S/(µm × µm)7 × 7
    约瑟夫森结临界电流I0/µA49
    约瑟夫森结电容CJ/pF2
    并联电阻Rsh0.84
    回滞系数βc0.2
    调制系数βL1.6
    SQUID环路电感LSQ/pH33
    SQUID环路与输入线圈互感MIN/pH130
    SQUID环路与反馈线圈互感MFB/pH36
    输入线圈电感LIN/nH3
    反馈线圈电感LFB/nH1
    输入电流灵敏度1/MIN/(μA·Φ0–1)15
    反馈电流灵敏度1/MFB/(μA·Φ0–1)56
    DownLoad: CSV

    表 2  二阶梯度交叉耦合SQUID电流传感器的性能参数

    Table 2.  Property parameters of the second-order gradiometric cross-coupled SQUID current sensor.

    参数实测值
    偏置电流Ib, max/μA215
    并联电阻Rsh1
    回滞系数βc0.67
    输入电流灵敏度1/MIN/(μA·Φ0–1)17
    反馈电流灵敏度1/MFB/(μA·Φ0–1)86
    磁通-电压转换系数VΦ/(μV·Φ0–1)108
    最大调制峰值Vpp/μV31
    磁通白噪声$\sqrt{S_{\varPhi}} $/(μΦ0·$ \sqrt{{\rm{H}}{\rm{z}}} $–1)2
    电流白噪声$\sqrt{S_I} $/(pA·$ \sqrt{{\rm{H}}{\rm{z}}} $–1)34
    SQUID环路与输入线圈互感MIN/pH117
    SQUID环路与反馈线圈互感MFB/pH24
    DownLoad: CSV
    Baidu
  • [1]

    Clarke J, Braginski A I 2004 The SQUID Handbook (Vol. 1) (KgaA, Weinheim: Wiley-VCH Verlag GmbH & Co.) pp1−210

    [2]

    Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602Google Scholar

    [3]

    Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003Google Scholar

    [4]

    Jackson B D, Korte P A J, Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, Hartog R, Kiviranta M, Lange G, Leeuwen B J, Macculi C, Ravera L, Trappe N, Weers H, Withington S 2012 IEEE Trans. Terahertz Sci. and Technol. 2 12Google Scholar

    [5]

    Henderson S W, Ahmed Z, Austermann J, Becker D, Bennett D A, Brown D, Chaudhuri S, Cho H M S, D'Ewart J M, Dober B, Duff S M, Dusatko J E, Fatigoni S, Frisch J C, Gard J D, Halpern M, Hilton G C, Hubmayr J, Irwin K D, Karpel E D, Kernasovskiy S S, Kuenstner S E, Kuo C L, Li D, Mates J A B, Reintsema C D, Smith S R, Ullom J, Vale L R, Winkle D D V, Vissers M, Yu C 2018 Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX Texas, United States, June 10−15 2018 p1070819

    [6]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [7]

    Schmidt M, Helversen M, López M, Gericke F, Schlottmann E, Heindel T, Kück S, Reitzenstein S, Beyer J 2018 J. Low Temp. Phys. 193 1243Google Scholar

    [8]

    Irwin K D 2002 Physica C 368 203Google Scholar

    [9]

    Kempf S, Wegner M, Fleischmann A, Gastaldo L, Herrmann F, Papst M, Richter D, Enss C 2017 AIP Adv. 7 015007Google Scholar

    [10]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405Google Scholar

    [11]

    Drung D, Abmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig T 2007 IEEE Trans. Appl. Supercond. 17 699Google Scholar

    [12]

    Stiehl G M, Cho H M, Hilton G C, Irwin K D, Mates J A B, Reintsema C D, Zink B L 2011 IEEE Trans. Appl. Supercond. 21 298Google Scholar

    [13]

    Beyer J, Drung D 2008 Supercond. Sci. Technol. 21 095012Google Scholar

    [14]

    Schurig T 2014 J. Phys. Conf. Ser. 568 032015Google Scholar

    [15]

    Silva-Feaver M, Arnold K, Barron D, Denison E V, Dobbs M, Groh J, Hilton G, Hubmayr J, Irwin K, Lee A, Vale L R 2018 J. Low Temp. Phys. 193 600Google Scholar

    [16]

    Schurig T, Trahms L 2009 IEEE CSC & ESAS European Superconductivity News Forum 3 RN9Google Scholar

    [17]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [18]

    Drung D 2016 IEEE CSC & ESAS European Supercon- ductivity News Forum 10 CR70

    [19]

    SQUID sensors, Magnicon GmbH www.magnicon.com [2021-02-07]

    [20]

    LTS Sensors, STAR Cryoelectronics www.starcryo.com [2021-02-07]

    [21]

    Cantor R, Hall J A, Matlachov A N, Volegov P L 2007 IEEE Trans. Appl. Supercond. 17 672Google Scholar

    [22]

    Kempf S, Ferring A, Fleischmann A, Gastaldo L, Enss C, 2013 Supercond. Sci. Technol. 26 065012Google Scholar

    [23]

    Kempf S, Ferring A, Fleischmann A, Enss C 2015 Supercond. Sci. Technol. 28 045008Google Scholar

    [24]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp Phys 184 389Google Scholar

    [25]

    Zhang X, Zhang G, Wang Y, Rong L, Zhang S, Wu J, Qiu L, Xie X, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503Google Scholar

    [26]

    Kuriki S, Isobe Y, Mizutani Y 1987 J. Appl. Phys. 61 781Google Scholar

    [27]

    Carelli P, Chiaventi L, Leoni R, Pullano M, Spagnolo G S 1991 Clin. Phys. Physiol. Meas. 12 13Google Scholar

    [28]

    Beyer J, Drung D, Peters M, Schurig T, Bandler S R 2009 IEEE Trans. Appl. Supercond. 19 505Google Scholar

    [29]

    Xu D, Li J, Cao W, Liu J, Chen W 2020 Conference on Precision Electromagnetic Measurements Denver, United States, August 24−28 2020 p9191689

    [30]

    Fourie C J, Perold W J 2005 IEEE Trans. Appl. Supercond. 15 300Google Scholar

    [31]

    Drung D, Hinnrichs C, Barthelmess H 2006 Supercond. Sci. Technol. 19 S235Google Scholar

    [32]

    Drung D, Ludwig F, Müller W, Steinhoff U, Trahms L, Koch H, Shen Y Q, Jensen M B, Vase P, Holst T, Freltoft T, Curio G 1996 Appl. Phys. Lett. 68 1421Google Scholar

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection. Acta Physica Sinica, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [3] Shi Zhong-Yu, Dai Xu-Cheng, Wang Hao-Yu, Mai Zhan-Zhang, Ouyang Peng-Hui, Wang Yi-Zhuo, Chai Ya-Qiang, Wei Lian-Fu, Liu Xu-Ming, Pan Chang-Zhao, Guo Wei-Jie, Shu Shi-Bo, Wang Yi-Wen. Noise spectrum analysis of superconducting kinetic inductance detectors. Acta Physica Sinica, 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [4] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [5] Measurement of the Noise of Current Source by Pump-probe Atomic Magnetometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211122
    [6] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [7] Liang Tian-Tian, Zhang Guo-Feng, Wu Wen-Tao, Ni Zhi, Wang Yong-Liang, Ying Li-Liang, Wu Jun, Rong Liang-Liang, Peng Wei, Gao Bo. Fabrication and experimental analysis of series superconducting quantum inteference device array. Acta Physica Sinica, 2021, 70(17): 178501. doi: 10.7498/aps.70.20210467
    [8] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [9] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [10] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [11] Wang Dang-Hui, Xu Tian-Han, Wang Rong, Luo She-Ji, Yao Ting-Zhen. Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [12] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] Chen Zhao, He Gen-Fang, Zhang Qing-Ya, Liu Jian-She, Li Tie-Fu, Chen Wei. Fabrication and characterization of the superconducting quantum interference device amplifier with Washer type input coil. Acta Physica Sinica, 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [14] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [15] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [16] Wang Ning, Jin Yi-Rong, Deng Hui, Wu Yu-Lin, Zheng Guo-Lin, Li Shao, Tian Ye, Ren Yu-Feng, Chen Ying-Fei, Zheng Dong-Ning. Ultra-low field magnetic resonance imaging based on high Tc dc-SQUID. Acta Physica Sinica, 2012, 61(21): 213302. doi: 10.7498/aps.61.213302
    [17] Tang Dong-He, Du Lei, Wang Ting-Lan, Chen Hua, Jia Xiao-Fei. A unified scattering theory model for current noise in nanoscale devices. Acta Physica Sinica, 2011, 60(9): 097202. doi: 10.7498/aps.60.097202
    [18] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [19] Sun Tao, Chen Xing-Guo, Hu Xiao-Ning, Li Yan-Jin. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [20] WANG QIANG-HUA, YAO XI-XIAN. ON THERMAL FLUCTUATIONS IN A JOSEPHSON-FLUXON OSCILLATOR. Acta Physica Sinica, 1993, 42(10): 1661-1668. doi: 10.7498/aps.42.1661
Metrics
  • Abstract views:  5237
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2020
  • Accepted Date:  05 February 2021
  • Available Online:  07 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map