-
超导量子干涉仪(SQUID)放大器具有低输入阻抗、低噪声、低功耗等优点, 目前被广泛用于微弱信号的检测领域. 与其他工艺相比, Nb/Al-AlOx/Nb结构的约瑟夫森结具有相对较高的转变温度(Tc)、高的磁通电压调制系数以及良好的热循环能力、较宽的临界电流范围, 因此是制备SQUID放大器的很好选择. 设计并制作了欠阻尼、过阻尼约瑟夫森结以及具有Washer型输入线圈的单SQUID放大器, 通过在He3制冷机3 K温区下对器件电流-电压特性进行测量, 得到良好的结I-V特性曲线、SQUID调制特性, 初步实现利用SQUID进行放大作用, 并计算了SQUID的电流分辨率. 此项工作对于超导转变边沿传感器读出电路的实现具有重要的意义.Superconducting quantum interference device (SQUID) amplifier is best known for its low input impedance, low noise and low power consumption. Nowadays it is widely used for detecting the weak signals. Compared with other methods, the Nb/Al-AlOx/Nb structure Josephson junction based SQUID has the advantages of high transition temperature, high voltage flux modulation index and good heat recycle ability, wide critical voltage range, so it is a very good option for making SQUID amplifier. In this work, we fabricate the overdamped Josephson junction and washer dc SQUID, and test the I-V characteristics at He3 3 K stage temperature and calculate the current resolution of SQUID. The result of SQUID modulation property is good. The magnification becomes larger after increasing the input line number of loops, and the system noise becomes smaller after the join of the LC filter. This work is very important for designing and manufacturing transition edge sensor readout circuits.
-
Keywords:
- superconducting quantum interference device amplifier /
- superconducting quantum interference device /
- Josephson junction /
- transition edge sensor
[1] Ryu C, Blackburn P W, Blinova A A, Boshier M G 2013 Phys. Rev. Lett. 111 205301
[2] Clarke J 1966 Philos. Mag. 13 115
[3] Mol J M, Foroughi F, Arps J, Kammerloher E, Bethke P, Gibson Jr G W, Fung Y K K, Klopfer B, Nowack K, Kratz P A, Huber M E, Moler K A, Kirtley J R, Bluhm H 2014 APS March Meeting 59 B24.00011
[4] Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602
[5] Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305 (in Chinese) [张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 220305]
[6] Jackson B D, de Korte P A J, van der Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, den Hartog R 2012 IEEE Trans. Thz. Sci. Technol. 2 12
[7] Guo Z C, Suo H L, Liu Z Y, Liu M, Ma L 2012 Acta Phys. Sin. 61 177401 (in Chinese) [郭志超, 索红莉, 刘志勇, 刘敏, 马麟 2012 61 177401]
[8] Irwin K 2014 APS March Meeting 59 F23.00003
[9] de Korte P A J, Beyer J, Deiker S, Hilton G C, Irwin K D, MacIntosh M 2003 Rev. Sci. Instrum. 74 3807
[10] Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707
[11] van Bibber K, Rosenberg L J 2006 Phys. Today 59 30
[12] Kiviranta M, Grönberg L, Sipola H 2011 Supercond. Sci. Technol. 24 045003
[13] Zakosarenko V, Schulz M, Krger A, Heinz E, Anders S, Peiselt K 2011 Supercond. Sci. Technol. 24 015011
[14] Wu W, Jia K, Li T F, Wang J L, Liu J S, Chen W 2010 Chin. Sci. Bull. 55 1969 (in Chinese) [吴威, 贾开, 李铁夫, 王吉林, 刘建设, 陈炜 2010 科学通报 55 1969]
[15] Tuttle J G, DiPirrot M J, Shirront P J, Welty R P, Radparvar M 1996 Cryogenics 36 879
[16] He G F 2014 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [何根芳 2014 硕士学位论文(北京: 清华大学)]
[17] Podt M 2003 Ph. D. Dissertation (Enschede: Twente University)
[18] Maezawa M, Aoyagi M, Nakagawa H, Kurosawa I, Takada S 1995 Appl. Phys. Lett. 66 2134
[19] He G F, Zhang Q Y, Li G, Chen Z, Dong W H, Liu J S, Li T F, Chen W 2014 Chin. J. Low. Temp. Phys. 36 410 (in Chinese) [何根芳, 张青雅, 李刚, 陈钊, 董文慧, 刘建设, 李铁夫, 陈炜 2014 低温 36 410]
-
[1] Ryu C, Blackburn P W, Blinova A A, Boshier M G 2013 Phys. Rev. Lett. 111 205301
[2] Clarke J 1966 Philos. Mag. 13 115
[3] Mol J M, Foroughi F, Arps J, Kammerloher E, Bethke P, Gibson Jr G W, Fung Y K K, Klopfer B, Nowack K, Kratz P A, Huber M E, Moler K A, Kirtley J R, Bluhm H 2014 APS March Meeting 59 B24.00011
[4] Granata C, Vettoliere A, Russo R, Fretto M, de Leo N, Lacquaniti V 2013 Appl. Phys. Lett. 103 102602
[5] Zhang Q Y, Dong W H, He G F, Li T F, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305 (in Chinese) [张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜 2014 63 220305]
[6] Jackson B D, de Korte P A J, van der Kuur J, Mauskopf P D, Beyer J, Bruijn M P, Cros A, Gao J R, Griffin D, den Hartog R 2012 IEEE Trans. Thz. Sci. Technol. 2 12
[7] Guo Z C, Suo H L, Liu Z Y, Liu M, Ma L 2012 Acta Phys. Sin. 61 177401 (in Chinese) [郭志超, 索红莉, 刘志勇, 刘敏, 马麟 2012 61 177401]
[8] Irwin K 2014 APS March Meeting 59 F23.00003
[9] de Korte P A J, Beyer J, Deiker S, Hilton G C, Irwin K D, MacIntosh M 2003 Rev. Sci. Instrum. 74 3807
[10] Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707
[11] van Bibber K, Rosenberg L J 2006 Phys. Today 59 30
[12] Kiviranta M, Grönberg L, Sipola H 2011 Supercond. Sci. Technol. 24 045003
[13] Zakosarenko V, Schulz M, Krger A, Heinz E, Anders S, Peiselt K 2011 Supercond. Sci. Technol. 24 015011
[14] Wu W, Jia K, Li T F, Wang J L, Liu J S, Chen W 2010 Chin. Sci. Bull. 55 1969 (in Chinese) [吴威, 贾开, 李铁夫, 王吉林, 刘建设, 陈炜 2010 科学通报 55 1969]
[15] Tuttle J G, DiPirrot M J, Shirront P J, Welty R P, Radparvar M 1996 Cryogenics 36 879
[16] He G F 2014 M. S. Dissertation (Beijing: Tsinghua University) (in Chinese) [何根芳 2014 硕士学位论文(北京: 清华大学)]
[17] Podt M 2003 Ph. D. Dissertation (Enschede: Twente University)
[18] Maezawa M, Aoyagi M, Nakagawa H, Kurosawa I, Takada S 1995 Appl. Phys. Lett. 66 2134
[19] He G F, Zhang Q Y, Li G, Chen Z, Dong W H, Liu J S, Li T F, Chen W 2014 Chin. J. Low. Temp. Phys. 36 410 (in Chinese) [何根芳, 张青雅, 李刚, 陈钊, 董文慧, 刘建设, 李铁夫, 陈炜 2014 低温 36 410]
计量
- 文章访问数: 6476
- PDF下载量: 230
- 被引次数: 0