搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽运-检测型原子磁力仪对电流源噪声的测量

陈大勇 缪培贤 史彦超 崔敬忠 刘志栋 陈江 王宽

引用本文:
Citation:

抽运-检测型原子磁力仪对电流源噪声的测量

陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽

Measurement of noise of current source by pump-probe atomic magnetometer

Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan
PDF
HTML
导出引用
  • 用于在宽量程范围内标定原子磁力仪的灵敏度的复现磁场通常由精密电流源和标准线圈产生, 电流源噪声将直接影响原子磁力仪在宽量程范围内标定的灵敏度. 本文基于抽运-检测型原子磁力仪首先提出抑制复现磁场漂移的磁补偿方法, 其次开展宽量程范围内电流源的噪声和原子磁力仪的灵敏度之间依赖关系的研究. 研究结果表明, 抽运-检测型原子磁力仪的灵敏度主要由电流源噪声决定, 因此可用特定磁场下的灵敏度估算电流源在对应输出电流条件下的电流噪声. 本文研究对弱磁传感器灵敏度指标的标定、高精度电流源的研制、磁感应强度计量和电流计量的协同发展都具有参考价值.
    The stable and reproducible magnetic field generated by a precision current source and a coil is usually used to calibrate the sensitivity of an atomic magnetometer. The noise of the current source directly determines the noise of the magnetic field. Therefore a highly sensitive atomic magnetometer can be used to measure the noise of the current source.In this paper, a pump-probe atomic magnetometer is used to measure and estimate the noises of two current sources in a wide range. Firstly, in order to suppress the drift of magnetic field, which is caused by the drift of the current source or the gradual change of the magnetization of magnetic shielding materials, a method of implementing the magnetic compensation by using a precision source B2912A with small current is proposed and realized. The experimental results show that the magnetic compensation significantly suppresses the drift of magnetic field and reduces the amplitude of the power spectral density of magnetic field values to less than 0.1 Hz, but have little effect on the amplitude of the power spectral density of magnetic field values more than 0.1 Hz. Secondly, the relationship between the sensitivity of the pump-probe atomic magnetometer and the noises of two current sources in a wide range is respectively verified experimentally. When the magnetic field varies from 100 nT to 10000 nT, the sensitivity of the pump-probe atomic magnetometer increases stepwise from 0.2 pT/Hz1/2 to 15 pT/Hz1/2 by using a precision source B2912A to generate the magnetic field, while the magnetometer sensitivity is always about 20 pT/Hz1/2 by using a DC power analyzer N6705B to generate the magnetic field. When the magnetic field increases from 5000 nT to 6000 nT, the current resolution of B2912A changes from 100 nA to 1 μA, leading the peak to peak of the measured magnetic field to change from 23 pT to 230 pT. In the same transformation process of the magnetic field, the current resolution of N6705B is always about 2 μA, causing the peak to peak of the measured magnetic field to maintain at 300 pT. The experimental results show that the sensitivity of the pump-probe atomic magnetometer is limited by the noise of the magnetic field, thus the current noise can be estimated by the sensitivity of the pump-probe atomic magnetometer. When the magnetic field is set to 5000 nT, the current of B2912A or N6705B supplied to the coil is 94.8 mA, while the noise of B2912A or N6705B is 22.70 nA/Hz1/2 or 0.39 μA/Hz1/2, respectively. The value of the current noise is about 20% of the value of the current resolution, which will be given a more reasonable explanation by combining the data processing process and the calibration details of current source in the future.Our research is of great significance in calibrating the sensitivity of magnetic sensor, developing the high-precision current sources, and co-developing the magnetic induction metrology and current metrology.
      通信作者: 缪培贤, miaopeixian@163.com
    • 基金项目: 真空技术与物理重点实验室基金(批准号: HTKJ2019KL510001)和甘肃省重点研发计划(批准号: 20YF3GA001)资助的课题.
      Corresponding author: Miao Pei-Xian, miaopeixian@163.com
    • Funds: Project supported by the Foundation of Science and Technology on Vacuum Technology and Physics Laboratory, China (Grant No. HTKJ2019KL510001) and the Key R&D Program of Gansu Province, China (Grant No. 20YF3GA001).
    [1]

    Kornack T W, Ghosh R K, Romalis M V 2005 Appl. Phys. Lett. 95 230801Google Scholar

    [2]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75Google Scholar

    [3]

    Shah V K, Wakai R T 2013 Phys. Med. Biol. 58 8153Google Scholar

    [4]

    Boto E, Holmes N, Legget J, et al. 2018 Nature 555 657Google Scholar

    [5]

    Maus S, Sazonova T, Hemant K, Fairhead J D 2007 Geochem. Geophys. Geosyst. 8 1

    [6]

    Cohen Y, Achache J 1990 J. Geophys. Res. 95 10783Google Scholar

    [7]

    Clem T R 1998 Nav. Eng. J. 110 139Google Scholar

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [9]

    Vasilakis G, Brown J M, Kornack T W, Romal M V 2009 Phys. Rev. Lett. 94 261801

    [10]

    Miao P X, Zheng W Q, Yang S Y, Wu B, Cheng B, Tu J H, Ke H L, Yang W, Wang J, Cui J Z, Lin Q 2019 J. Opt. Soc. Am. B 36 819Google Scholar

    [11]

    杨宝, 缪培贤, 史彦超, 冯浩, 张金海, 崔敬忠, 刘志栋 2020 中国激光 47 1012001Google Scholar

    Yang B, Miao P X, Shi Y C, Feng H, Zhang J H, Cui J Z, Liu Z D 2020 Chin. J. Lasers 47 1012001Google Scholar

    [12]

    刘国宾, 孙献平, 顾思洪, 冯继文, 周欣 2012 物理 41 803

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803

    [13]

    顾源, 石荣晔, 王延辉 2014 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [14]

    李楠, 黄凯凯, 陆璇辉 2013 62 133201Google Scholar

    Li N, Huang K K, Lu X H 2013 Acta Phys. Sin. 62 133201Google Scholar

    [15]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [16]

    鄢建强, 崔敬忠, 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉 2018 真空与低温 24 259Google Scholar

    Yan J Q, Cui J Z, Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H 2018 Vacuum & Cryogenics 24 259Google Scholar

    [17]

    王晓峰, 韩晓东, 杨敬轩 2007 宇航计测技术 27 26Google Scholar

    Wang X F, Han X D, Yang J X 2007 Journal of Astronautic Metrology and Measurement 27 26Google Scholar

    [18]

    Gan Q, Shang J T, Ji Y, Wu L 2017 Rev. Sci. Instrum. 88 115009Google Scholar

    [19]

    Li X, Shi Y, Xue H B, Ruan Y, Feng Y Y 2021 Chin. Phys. B 30 030701Google Scholar

    [20]

    Li G Z, Xin Q, Geng X X, Liang Z, Liang S Q, Huang G M, Li G X, Yang G Q 2020 Chin. Opt. Lett. 18 031202Google Scholar

    [21]

    Shen L, Zhang R, Wu T, Peng X, Yu S, Chen J B, Guo H 2020 Rev. Sci. Instrum. 91 084701Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental apparatus.

    图 2  原子磁力仪的时序示意图 (a) 10000 nT 磁场下的实测数据; (b) 图(a)中部分曲线的放大

    Fig. 2.  The schematic diagram of timing sequence for atomic magnetometer: (a) The data measured in the magnetic field of 10000 nT; (b) expanded version of the curve in Fig. (a).

    图 3  磁补偿设计对抽运-检测型原子磁力仪实测灵敏度的影响 (a) 无磁补偿时实测磁场值; (b) 有磁补偿时实测磁场值; (c) 磁补偿时精密电流源输出的补偿电流; (d) 图(a)和(b)中5 min稳定磁场值的功率谱密度

    Fig. 3.  The influence of the design of magnetic compensation on the sensitivity of pump-probe atomic magnetometer: (a) Magnetic field values without magnetic compensation; (b) magnetic field values with magnetic compensation; (c) compensation current in the process of the magnetic compensation; (d) the power spectral density of the magnetic field values in (a) and (b).

    图 4  分别用两种电流源产生的外磁场与原子磁力仪的灵敏度的依赖关系

    Fig. 4.  The relationship between the sensitivity of atomic magnetometer and the external magnetic field generated by two current sources respectively.

    图 5  分别用两种电源产生5000 nT和6000 nT磁场时抽运-检测型原子磁力仪测量的磁场值

    Fig. 5.  The magnetic field values measured by pump-probe atomic magnetometer when the magnetic field of 5000 nT and 6000 nT is generated by two current sources respectively.

    Baidu
  • [1]

    Kornack T W, Ghosh R K, Romalis M V 2005 Appl. Phys. Lett. 95 230801Google Scholar

    [2]

    Meyer D, Larsen M 2014 Gyroscopy and Navigation 5 75Google Scholar

    [3]

    Shah V K, Wakai R T 2013 Phys. Med. Biol. 58 8153Google Scholar

    [4]

    Boto E, Holmes N, Legget J, et al. 2018 Nature 555 657Google Scholar

    [5]

    Maus S, Sazonova T, Hemant K, Fairhead J D 2007 Geochem. Geophys. Geosyst. 8 1

    [6]

    Cohen Y, Achache J 1990 J. Geophys. Res. 95 10783Google Scholar

    [7]

    Clem T R 1998 Nav. Eng. J. 110 139Google Scholar

    [8]

    Savukov I M, Romalis M V 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [9]

    Vasilakis G, Brown J M, Kornack T W, Romal M V 2009 Phys. Rev. Lett. 94 261801

    [10]

    Miao P X, Zheng W Q, Yang S Y, Wu B, Cheng B, Tu J H, Ke H L, Yang W, Wang J, Cui J Z, Lin Q 2019 J. Opt. Soc. Am. B 36 819Google Scholar

    [11]

    杨宝, 缪培贤, 史彦超, 冯浩, 张金海, 崔敬忠, 刘志栋 2020 中国激光 47 1012001Google Scholar

    Yang B, Miao P X, Shi Y C, Feng H, Zhang J H, Cui J Z, Liu Z D 2020 Chin. J. Lasers 47 1012001Google Scholar

    [12]

    刘国宾, 孙献平, 顾思洪, 冯继文, 周欣 2012 物理 41 803

    Liu G B, Sun X P, Gu S H, Feng J W, Zhou X 2012 Physics 41 803

    [13]

    顾源, 石荣晔, 王延辉 2014 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [14]

    李楠, 黄凯凯, 陆璇辉 2013 62 133201Google Scholar

    Li N, Huang K K, Lu X H 2013 Acta Phys. Sin. 62 133201Google Scholar

    [15]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [16]

    鄢建强, 崔敬忠, 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉 2018 真空与低温 24 259Google Scholar

    Yan J Q, Cui J Z, Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H 2018 Vacuum & Cryogenics 24 259Google Scholar

    [17]

    王晓峰, 韩晓东, 杨敬轩 2007 宇航计测技术 27 26Google Scholar

    Wang X F, Han X D, Yang J X 2007 Journal of Astronautic Metrology and Measurement 27 26Google Scholar

    [18]

    Gan Q, Shang J T, Ji Y, Wu L 2017 Rev. Sci. Instrum. 88 115009Google Scholar

    [19]

    Li X, Shi Y, Xue H B, Ruan Y, Feng Y Y 2021 Chin. Phys. B 30 030701Google Scholar

    [20]

    Li G Z, Xin Q, Geng X X, Liang Z, Liang S Q, Huang G M, Li G X, Yang G Q 2020 Chin. Opt. Lett. 18 031202Google Scholar

    [21]

    Shen L, Zhang R, Wu T, Peng X, Yu S, Chen J B, Guo H 2020 Rev. Sci. Instrum. 91 084701Google Scholar

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化.  , 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [3] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力.  , 2022, 71(24): 244206. doi: 10.7498/aps.71.20221618
    [4] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2021, (): . doi: 10.7498/aps.70.20211122
    [5] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [6] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统.  , 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [7] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [9] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究.  , 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [10] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究.  , 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [13] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [14] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [15] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究.  , 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [19] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  5075
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-13
  • 修回日期:  2021-09-28
  • 上网日期:  2022-01-09
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map