Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms

Wang Shuo Wang Wen-Hui Lü Jun-Peng Ni Zhen-Hua

Citation:

Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms

Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua
PDF
HTML
Get Citation
  • Two-dimensional (2D) layered materials have attracted increasing attention in recent years because of their abundant material categories and superior physical/chemical properties. In order to satisfy the requirements for highly integrated devices in the post-Moore era, substantial efforts have been devoted to producing atomically thin 2D materials with large lateral dimensions and high crystalline quality. The controllable synthesis is the precondition of the implementation of large mass producing 2D material in industry. Chemical vapor deposition (CVD) is a powerful method widely used in the synthesis of 2D materials and their hybrid structures. However, it is still challengeable to flexibly and easily grow any 2D materials into large area. Therefore, a systematic understanding of the requirements for controllable growth of different 2D materials are desired. In this review article, we provide a comprehensive discussion on the influencing factors, material transport, nucleation and growth rate in the CVD growth process. Finally, the strategies to further improve the size and quality of 2D materials are prospected.
      Corresponding author: Lü Jun-Peng, phyljp@seu.edu.cn ; Ni Zhen-Hua, zhni@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0205700, 2019YFA0308000) and the National Natural Science Foundation of China (Grant Nos. 61774034, 91963130)
    [1]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [6]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192Google Scholar

    [8]

    Desai S B, Madhvapathy S R, Sachid A B, Linas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [9]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [10]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [11]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 1Google Scholar

    [12]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [13]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A 5 11357Google Scholar

    [14]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [15]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [16]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [17]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T 2017 Nat. Photonics 11 366Google Scholar

    [18]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J 2019 Nat. Commun. 10 1Google Scholar

    [19]

    Zhang Y, Yao Y, Sendeku M G, Yin L, Zhan X, Wang F, Wang Z, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [20]

    Huo C, Yan Z, Song X, Zeng H 2015 Sci. Bull. 60 1994Google Scholar

    [21]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [22]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [23]

    Kalanyan B, Kimes W A, Beams R, Stranick S J, Garratt E, Kalish I, Davydov A V, Kanjolia R K, Maslar J E 2017 Chem. Mater. 29 6279Google Scholar

    [24]

    Choi S H, Stephen B, Park J H, Lee J S, Kim S M, Yang W, Kim K K 2017 Sci. Rep. 7 1Google Scholar

    [25]

    Cwik S, Mitoraj D, Mendoza Reyes O, Rogalla D, Peeters D, Kim J, Schütz H M, Bock C, Beranek R, Devi A 2018 Adv. Mater. Interfaces 5 1800140Google Scholar

    [26]

    Ma L, Nath D N, Lee E W, Lee C H, Yu M, Arehart A, Rajan S, Wu Y 2014 Appl. Phys. Lett. 105 072105Google Scholar

    [27]

    Tao L, Chen K, Chen Z, Chen W, Gui X, Chen H, Li X, Xu J B 2017 ACS Appl. Mater. Interfaces 9 12073Google Scholar

    [28]

    Qian S, Yang R, Lan F, Xu Y, Sun K, Zhang S, Zhang Y, Dong Z 2019 Mater. Sci. Semicond. Process 93 317Google Scholar

    [29]

    Gong Y, Ye G, Lei S, Shi G, He Y, Lin J, Zhang X, Vajtai R, Pantelides S T, Zhou W 2016 Adv. Funct. Mater. 26 2009Google Scholar

    [30]

    李娜, 张儒静, 甄真, 许振华, 何利民 2020 材料工程 48 36Google Scholar

    Li N, Zhang R J, Zhen Z, Xu Z H, He L M 2020 J. Mater. Eng. 48 36Google Scholar

    [31]

    Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G 2011 Nano Res. 4 315Google Scholar

    [32]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 125 14371Google Scholar

    [33]

    Kim H, Ahn C, Arabale G, Lee C, Kim T 2013 ECS Trans. 58 47

    [34]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y 2017 Nat. Nanotechnol. 12 744Google Scholar

    [35]

    Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281Google Scholar

    [36]

    尤佳毅, 沈鸿烈, 吴天如, 谢晓明 2015 真空科学与技术学报 35 109Google Scholar

    You J Y, Sheng H L, Wu T R, Xie X M 2015 Chin. J. Vac. Sci. Technol. 35 109Google Scholar

    [37]

    Rao R, Weaver K, Maruyama B 2015 Mater. Express 5 541Google Scholar

    [38]

    任文杰, 朱永, 龚天诚, 王宁, 张洁 2015 功能材料 46 16115

    Ren W J, Zhu Y, Gong T C, Wang N, Zhang J 2015 J. Funct. Mater. 46 16115

    [39]

    Shi R, He P, Cai X, Zhang Z, Wang W, Wang J, Feng X, Wu Z, Amini A, Wang N 2020 ACS Nano 14 7593Google Scholar

    [40]

    Yu H, Liao M, Zhao W, Liu G, Zhou X, Wei Z, Xu X, Liu K, Hu Z, Deng K 2017 ACS Nano 11 12001Google Scholar

    [41]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [42]

    Li J, Cheng S, Liu Z, Zhang W, Chang H 2018 J. Phys. Chem. C 122 7005Google Scholar

    [43]

    Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L 2013 Sci. Rep. 3 1866Google Scholar

    [44]

    Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lü R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M 2013 ACS Nano 7 5235Google Scholar

    [45]

    葛雯, 吕斌 2013 材料科学与工程学报 31 489Google Scholar

    Ge Wd, Lv B 2013 Mater. Sci. Eng. 31 489Google Scholar

    [46]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [47]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [48]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [49]

    Abraham F F 1974 Homogeneous Nucleation Theory (Vol. 263) (New York: Academic Press) pp1−8

    [50]

    Schmelzer J, Röpke G, Priezzhev V B 2005 Nucleation Theory and Applications (Vol. 76) (Hoboken: Wiley-VCH Weinheim) pp39−54

    [51]

    Pruppacher H R, Klett J D 1980 Nature 284 88

    [52]

    Vehkamäki H 2006 Classical Nucleation Theory in Multicomponent Systems (Berlin: Springer Science & Business Media) pp119−133

    [53]

    杨雅萍 2016 硕士学位论文 (长沙: 国防科学技术大学)

    Yang Y P 2016 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [54]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7992Google Scholar

    [55]

    Chen J Y, Zhao X X, Tan S J R, Xu H, Wu B, Liu B, Fu D Y, Fu W, Geng D C, Liu Y P, Liu W, Tang W, Li L J, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [56]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (Singapore: World Scientific) pp105−036

    [57]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [58]

    Jia C, Jiang J, Gan L, Guo X 2012 Sci. Rep. 2 707Google Scholar

    [59]

    程想 2016 硕士学位论文 (武汉: 华中科技大学)

    Cheng X 2016 M. S. Thesis (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [60]

    Zafar A, Zafar Z, Zhao W, Jiang J, Zhang Y, Chen Y, Lu J, Ni Z 2019 Adv. Funct. Mater. 29 1809261

    [61]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [62]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720Google Scholar

    [63]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P 2016 Nat. Nanotechnol. 11 930Google Scholar

    [64]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X 2018 Nat. Commun. 9 979Google Scholar

    [65]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J 2018 Nature 556 355Google Scholar

    [66]

    Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y 2019 Nano Lett. 19 2148Google Scholar

  • 图 1  CVD过程中影响二维材料产物的参数及因素[21]

    Figure 1.  The affecting parameters and factors during CVD growth of two-dimensional materials[21].

    图 2  传统CVD的反应过程示意图[35]

    Figure 2.  Schematic illustration of the reaction processes in a typical CVD reactor[35].

    图 3  (a) OIAG法生长MoX2的方案示意图; (b) OIAG中OI的工作机制示意图; (c)−(f)不同OI剂量(c) 4 mg, (d) 5 mg, (e) 6 mg, (f) 7 mg 下MoS2的光镜图像[39]; (g) 使用多条路径制备MoS2薄膜的方案示意图; (h) 蓝宝石衬底上生长的晶圆级MoS2图像[40]

    Figure 3.  Schematic illustration of (a) the growth of MoX2 by OIAG and (b) the working mechanism of OI in the progress of OIAG; (c)−(f) optical images of MoS2 with different concentrations: (c) 4 mg, (d) 5 mg, (e) 6 mg, (f) 7 mg[39]; (g) schematic illustration of the modified CVD system for MoS2 growth; (h) photograph of MoS2 film grown on sapphire substrates[40].

    图 4  合成厘米级WTe2的CVD装置图示[42]

    Figure 4.  Schematic illustration of the growth of WTe2 film with centimeter-scale by three-zone chemical vapor depo-sition[42].

    图 5  (a), (b) 抛光前后的铜箔的扫描电子显微镜(scanning electron microscope, SEM)图像[53]; (c) 在钨衬底上平坦液体Cu表面制备石墨烯的示意图; (d) SEM下六方石墨烯畴在液体Cu表面的“自组装样”行为[54]; (e) 合成MoSe2薄膜的CVD装置图示; (f) 光镜下MoSe2薄膜的图像; (g) MoSe2薄膜的扫描隧道显微镜(scanning tunneling microscope, STM)图像[55]

    Figure 5.  SEM images of Cu foil (a) before- and (b) after-polishing[53]; (c) schematic illustration of the synthesis of graphene on the liquid Cu surface; (d) SEM image of “self-assembling sample behavior” of hexagonal graphene domains on liquid Cu surface[54]; (e) schematic demonstration of the growth of the WTe2 film by CVD; (f) optical image of MoSe2 film; (g) STM image of MoSe2 film[55].

    图 6  (a) 石墨烯在不同温度下在Ni(111)表面和台阶处的成核率与$ \Delta \mu $的函数关系; (b) 不同温度下RE/RT比率与$ \Delta \mu $的函数关系[48] (RT, 平台上石墨烯的成核率; RE, 台阶表面的成核率); (c) 晶体生长曲线, 吉布斯自由能变化和团簇所含原子数n的关系[57]

    Figure 6.  (a) Nucleation rates of graphene growth on a Ni(111) terrace and near a step edge as a function of$ \Delta \mu $; (b) RE/RT ratio as the function of $ \Delta \mu $[48] (RT, nucleation rate of graphene on the terrace; RE, nucleation rate of graphene on the step edge); (c) crystal growth curve: Gibbs free energy as a function of the cluster size, n[57].

    图 7  (a)铜片氧化前后对比图[58]; 不同退火时间下的石墨烯光学图片 (b) 50 min; (c) 90 min; 不同CH4和H2比例下长出的石墨烯光学图片 (d) 2 sccm: 60 sccm; (e) 1 sccm: 80 sccm; (f) 1 sccm: 100 sccm; (g) 0.5 sccm: 80 sccm; 不同生长时间下石墨烯的形貌图 (h) 100 min; (i) 200 min; (j) 420 min; (k) 500 min; (l) 660 min[59]

    Figure 7.  (a) Comparison diagram of Cu foil with/without oxidation[58]; optical images of graphene for different annealing time: (b) 50 min; (c) 90 min; optical images of graphene for different proportion of CH4 and H2: (d) 2 sccm:60 sccm; (e) 1 sccm:80 sccm; (f) 1 sccm∶100 sccm; (g) 0.5 sccm∶80.0 sccm; optical images of graphene for different growth time: (h) 100 min; (i) 200 min; (j) 420 min; (k) 500 min; (l) 660 min[59].

    图 8  (a)—(d) 不同生长时间下WS2的光学图像 (a) 3 min; (b) 5 min; (c) 8 min; (d) 15 min; (e) WS2平均尺寸和生长时间的关系曲线[60]

    Figure 8.  Optical images of WS2 for different time: (a) 3 min; (b) 5 min; (c) 8 min; (d) 15 min; (e) plot of average flake size versus growth durations[60].

    图 9  (a), (b) 位于石墨烯边缘的Ni原子的STM图像[61]; (c) 未经氧处理的石墨烯边缘示意图; (d) 对H附着的能量进行的密度泛函理论计算(density functional theory, DFT)[62]; (e) 氧处理的石墨烯边缘示意图; (f) 局部供氧法示意图; (g) 氧未参与反应的CH4分解过程; (h) 反应能量分布示意图; (i) 氧参与反应的CH4分解过程[63]

    Figure 9.  (a), (b) STM images of the Ni adatoms at the graphene edges[61]; (c)−(e) schematic illustration of graphene edges (e) with and (c) without oxygen and (d) the corresponding DFT calculations of the energies for H attachment[62]; (f) schematic illustration of the growth of WTe2 film by local-oxygen-feeding method; (g)−(i) the energy profiles of the reaction of CH4 decomposition (i) with and (g) without oxygen supply on Cu surface and (h) the corresponding DFT calculations of the energy dispersion[63].

    图 10  (a) 单层MoS2的光学图像; (b), (c) 引入Na元素和未引入Na元素的DFT对比实验[64]; (d) 使用盐辅助法合成的几种TMDs薄膜的光学图像[65]

    Figure 10.  (a) Optical image of monolayer MoS2 film; (b), (c) DFT calculations for the growth of MoS2 (b) without and (c) with Na[64]; (d) schematic illustration of the salt-assisted reaction process and optical images of TMDs films[65].

    Baidu
  • [1]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [6]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192Google Scholar

    [8]

    Desai S B, Madhvapathy S R, Sachid A B, Linas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [9]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [10]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [11]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 1Google Scholar

    [12]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [13]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A 5 11357Google Scholar

    [14]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [15]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [16]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [17]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T 2017 Nat. Photonics 11 366Google Scholar

    [18]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J 2019 Nat. Commun. 10 1Google Scholar

    [19]

    Zhang Y, Yao Y, Sendeku M G, Yin L, Zhan X, Wang F, Wang Z, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [20]

    Huo C, Yan Z, Song X, Zeng H 2015 Sci. Bull. 60 1994Google Scholar

    [21]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [22]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [23]

    Kalanyan B, Kimes W A, Beams R, Stranick S J, Garratt E, Kalish I, Davydov A V, Kanjolia R K, Maslar J E 2017 Chem. Mater. 29 6279Google Scholar

    [24]

    Choi S H, Stephen B, Park J H, Lee J S, Kim S M, Yang W, Kim K K 2017 Sci. Rep. 7 1Google Scholar

    [25]

    Cwik S, Mitoraj D, Mendoza Reyes O, Rogalla D, Peeters D, Kim J, Schütz H M, Bock C, Beranek R, Devi A 2018 Adv. Mater. Interfaces 5 1800140Google Scholar

    [26]

    Ma L, Nath D N, Lee E W, Lee C H, Yu M, Arehart A, Rajan S, Wu Y 2014 Appl. Phys. Lett. 105 072105Google Scholar

    [27]

    Tao L, Chen K, Chen Z, Chen W, Gui X, Chen H, Li X, Xu J B 2017 ACS Appl. Mater. Interfaces 9 12073Google Scholar

    [28]

    Qian S, Yang R, Lan F, Xu Y, Sun K, Zhang S, Zhang Y, Dong Z 2019 Mater. Sci. Semicond. Process 93 317Google Scholar

    [29]

    Gong Y, Ye G, Lei S, Shi G, He Y, Lin J, Zhang X, Vajtai R, Pantelides S T, Zhou W 2016 Adv. Funct. Mater. 26 2009Google Scholar

    [30]

    李娜, 张儒静, 甄真, 许振华, 何利民 2020 材料工程 48 36Google Scholar

    Li N, Zhang R J, Zhen Z, Xu Z H, He L M 2020 J. Mater. Eng. 48 36Google Scholar

    [31]

    Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G 2011 Nano Res. 4 315Google Scholar

    [32]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 125 14371Google Scholar

    [33]

    Kim H, Ahn C, Arabale G, Lee C, Kim T 2013 ECS Trans. 58 47

    [34]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y 2017 Nat. Nanotechnol. 12 744Google Scholar

    [35]

    Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281Google Scholar

    [36]

    尤佳毅, 沈鸿烈, 吴天如, 谢晓明 2015 真空科学与技术学报 35 109Google Scholar

    You J Y, Sheng H L, Wu T R, Xie X M 2015 Chin. J. Vac. Sci. Technol. 35 109Google Scholar

    [37]

    Rao R, Weaver K, Maruyama B 2015 Mater. Express 5 541Google Scholar

    [38]

    任文杰, 朱永, 龚天诚, 王宁, 张洁 2015 功能材料 46 16115

    Ren W J, Zhu Y, Gong T C, Wang N, Zhang J 2015 J. Funct. Mater. 46 16115

    [39]

    Shi R, He P, Cai X, Zhang Z, Wang W, Wang J, Feng X, Wu Z, Amini A, Wang N 2020 ACS Nano 14 7593Google Scholar

    [40]

    Yu H, Liao M, Zhao W, Liu G, Zhou X, Wei Z, Xu X, Liu K, Hu Z, Deng K 2017 ACS Nano 11 12001Google Scholar

    [41]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [42]

    Li J, Cheng S, Liu Z, Zhang W, Chang H 2018 J. Phys. Chem. C 122 7005Google Scholar

    [43]

    Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L 2013 Sci. Rep. 3 1866Google Scholar

    [44]

    Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lü R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M 2013 ACS Nano 7 5235Google Scholar

    [45]

    葛雯, 吕斌 2013 材料科学与工程学报 31 489Google Scholar

    Ge Wd, Lv B 2013 Mater. Sci. Eng. 31 489Google Scholar

    [46]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [47]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [48]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [49]

    Abraham F F 1974 Homogeneous Nucleation Theory (Vol. 263) (New York: Academic Press) pp1−8

    [50]

    Schmelzer J, Röpke G, Priezzhev V B 2005 Nucleation Theory and Applications (Vol. 76) (Hoboken: Wiley-VCH Weinheim) pp39−54

    [51]

    Pruppacher H R, Klett J D 1980 Nature 284 88

    [52]

    Vehkamäki H 2006 Classical Nucleation Theory in Multicomponent Systems (Berlin: Springer Science & Business Media) pp119−133

    [53]

    杨雅萍 2016 硕士学位论文 (长沙: 国防科学技术大学)

    Yang Y P 2016 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [54]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7992Google Scholar

    [55]

    Chen J Y, Zhao X X, Tan S J R, Xu H, Wu B, Liu B, Fu D Y, Fu W, Geng D C, Liu Y P, Liu W, Tang W, Li L J, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [56]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (Singapore: World Scientific) pp105−036

    [57]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [58]

    Jia C, Jiang J, Gan L, Guo X 2012 Sci. Rep. 2 707Google Scholar

    [59]

    程想 2016 硕士学位论文 (武汉: 华中科技大学)

    Cheng X 2016 M. S. Thesis (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [60]

    Zafar A, Zafar Z, Zhao W, Jiang J, Zhang Y, Chen Y, Lu J, Ni Z 2019 Adv. Funct. Mater. 29 1809261

    [61]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [62]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720Google Scholar

    [63]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P 2016 Nat. Nanotechnol. 11 930Google Scholar

    [64]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X 2018 Nat. Commun. 9 979Google Scholar

    [65]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J 2018 Nature 556 355Google Scholar

    [66]

    Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y 2019 Nano Lett. 19 2148Google Scholar

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] Chen Xue-Lian, Ju Bo, Jiao Hu-Po, Li Yan, Zhong Yu-Jie. Preparation of CsPbBr3 perovskite nanocrystals with controllable morphology and in-situ photoluminescence of formation kinetics. Acta Physica Sinica, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [4] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [5] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [6] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [8] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [9] Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Bi2O2Se photoconductive detector with low power consumption and high sensitivity. Acta Physica Sinica, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [10] Zhang Bao-Jun, Wang Fang, Shen Jia-Qiang, Shan Xin, Di Xi-Chao, Hu Kai, Zhang Kai-Liang. Effect analysis and magnetoelectric properties of hydrogen in Co-doped MoSe2 Co-growth. Acta Physica Sinica, 2020, 69(4): 048101. doi: 10.7498/aps.69.20191302
    [11] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [12] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [14] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [15] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [16] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [17] Hu Lin-Hua, Dai Jun, Liu Wei-Qing, Wang Kong-Jia, Dai Song-Yuan. Growth kinetics and growth process control of nanocrystalline TiO2 anatase. Acta Physica Sinica, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [18] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] Liu Zhi-Wen, Gu Jian-Feng, Sun Cheng-Wei, Zhang Qing-Yu. Study on nucleation and dynamic scaling of morphological evolution of ZnO film deposition by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  25822
  • PDF Downloads:  1086
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2020
  • Accepted Date:  06 September 2020
  • Available Online:  09 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map