搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自洽GW方法的碳化硅准粒子能带结构计算

高尚鹏 祝桐

引用本文:
Citation:

基于自洽GW方法的碳化硅准粒子能带结构计算

高尚鹏, 祝桐

Quasiparticle band structure calculation for SiC using self-consistent GW method

Gao Shang-Peng, Zhu Tong
PDF
导出引用
  • 在多体微扰理论的框架下, 分别采用G0W0方法和准粒子自洽GW方法计算3C-SiC和2H-SiC的准粒子能级. 由一个平均Monkhorst-Pack网格点上的准粒子能级和准粒子波函数出发, 结合最局域Wannier函数插值, 得到3C-SiC和2H-SiC的自洽准粒子能带结构. 3C-SiC的价带顶在点, 导带底在X点. DFT-LDA, G0W0和准粒子自洽GW给出的3C-SiC间接禁带宽度分别为 1.30 eV, 2.23 eV和2.88 eV. 2H-SiC价带顶在 点, 导带底在K点. 采用DFT-LDA, G0W0和准粒子自洽GW方法得到的间接禁带宽度分别为2.12 eV, 3.12 eV和 3.75 eV. 计算基于赝势方法, 对于3C-SiC和2H-SiC的准粒子自洽GW计算给出的禁带宽度均比实验值略大.
    Quasiparticle band structures of 3C-SiC and 2H-SiC were calculated using ab initio many body perturbation theory with GW approximation. Quasiparticle energies along high symmetry lines in the first Brillouin zone were evaluated using quasiparitcle self-consistent GW (QPscGW) method and the Maximally-localized Wannier Function interpolation. Both 3C-SiC and 2H-SiC have an indirect band gap with valence band maximum locating at point. The conduction band maximum of 3C-SiC is at X point. As a comparison, band gaps of 3C-SiC calculated by DFT-LDA, one-shot G0W0 and QPscGW are 1.30 eV, 2.23 eV and 2.88 eV respectively. The conduction band minimum of 2H-SiC locates at K point with a band gap of 2.12 eV, 3.12 eV and 3.75 eV predicted by DFT-LDA, one-shot G0W0 and QPscGW respectively. Lattice parameters calculated by DFT-LDA were used in this work. The QPscGW calculations are based on pseudopotential method, predicting slightly larger bandgaps for both 3C-SiC and 2H-SiC comparing with experiments.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB606403)和 国家自然科学基金(批准号:10804018)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606403) and the National Natural Science Foundation of China (Grant No. 10804018).
    [1]

    Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402

    [2]

    Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169

    [3]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390

    [4]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [5]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [6]

    Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109

    [7]

    Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [8]

    Holm B, Barth U V 1998 Phys. Rev. B 57 2108

    [9]

    Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221

    [10]

    Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662

    [11]

    Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401

    [12]

    Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701

    [13]

    Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [14]

    Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102

    [15]

    Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257

    [16]

    Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485

    [17]

    Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715

    [18]

    Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263

    [19]

    Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105

    [20]

    Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147

    [21]

    Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122

    [22]

    Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897

    [23]

    Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950

    [24]

    Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795

    [25]

    Schlegel H B 1982 J. Comp. Chem. 3 214

    [26]

    van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402

    [27]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582

    [28]

    Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81

    [31]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [32]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

  • [1]

    Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402

    [2]

    Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169

    [3]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390

    [4]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [5]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [6]

    Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109

    [7]

    Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [8]

    Holm B, Barth U V 1998 Phys. Rev. B 57 2108

    [9]

    Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221

    [10]

    Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662

    [11]

    Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401

    [12]

    Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701

    [13]

    Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [14]

    Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102

    [15]

    Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257

    [16]

    Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485

    [17]

    Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715

    [18]

    Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263

    [19]

    Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105

    [20]

    Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147

    [21]

    Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122

    [22]

    Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897

    [23]

    Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950

    [24]

    Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795

    [25]

    Schlegel H B 1982 J. Comp. Chem. 3 214

    [26]

    van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402

    [27]

    Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582

    [28]

    Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558

    [29]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [30]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81

    [31]

    Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163

    [32]

    Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟.  , 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测.  , 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究.  , 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [5] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算.  , 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [6] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究.  , 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [7] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响.  , 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [8] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响.  , 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [9] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能.  , 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [10] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化.  , 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [11] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [12] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究.  , 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [13] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [14] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用.  , 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究.  , 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究.  , 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构.  , 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [18] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度.  , 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [19] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究.  , 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究.  , 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
计量
  • 文章访问数:  10555
  • PDF下载量:  29101
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-21
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map