-
以聚氧化乙烯(PEO)为基质,成功制备出纳米ZnO掺杂的(PEO)8-ZnO-LiClO4离子导电聚合物电解质,并利用多种实验技术,包括扫描电子显微镜、X射线衍射(XRD)、傅里叶变换红外光谱和正电子湮没寿命谱(PALS),系统地研究了纳米ZnO与基质间相互作用及其对聚合物链段运动、纳米尺度自由体积、离子输运和复合电解质电导率的影响.实验结果发现,纳米ZnO的掺杂使聚合物电解质的离子电导率得到了大幅度提高,当ZnO与PEO质量比为6%时达到最大,(PEO)8-ZnO-LiClO4的电导率为1.8210-4 S cm-1,比(PEO)8-LiClO4的电导率(6.5810-5 S cm-1)提高了大约一个数量级.XRD结果显示,纳米ZnO的加入降低了PEO的结晶性,增加了锂离子传输的非晶相,从而提高了电导率.离散PALS测量结果表明,随着纳米ZnO的加入,复合电解质的自由体积、浓度和相对自由体积分数fr均增加.连续PALS分析揭示了自由体积的分布由一个峰劈裂成两个峰,表明纳米ZnO的掺杂对聚合物的微结构有很大影响.基于实验测量的fr和离子电导率,研究了离子导电机理.研究发现, fr与电导率之间存在一个直接关系,即fr越大,越有利于锂离子的传输,导致电导率越大.这个结果支持聚合物电解质导电的自由体积理论.
-
关键词:
- 正电子湮没寿命谱 /
- 聚合物纳米复合电解质 /
- 离子电导率 /
- 自由体积
The effects of nanosized ZnO on the microstructure, the free volume and the ionic conductivity of poly ethylene oxide (PEO) nanocomposite electrolytes (PEO)8-ZnO-LiClO4 are systematically studied by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy (PALS), respectively. The experimental results show that the presence of the nanosized ZnO brings about a reduction in the crystallinity of the PEO phase and a very marked increase in ionic conductivity. PALS discrete analysis shows that the free volume size, the free volume concentration and the relative free volume fraction significantly increase with the increase of nano-ZnO. Specially, it is the first time to observe the occurrence of peaks of the free volume distribution split after nano-ZnO has been filled, which indicates that the ZnO added into (PEO)8-LiClO4 has an important effect on the microstructure for nanocomposites due to the interaction between the nano-ZnO and matrix. A direct correlation between the free volume fraction and the ionic conductivity is observed, and the ionic conductivity mechanism is discussed.-
Keywords:
- positron annihilation lifetime spectroscopy /
- nanocomposite polymer electrolytes /
- ionic conductivity /
- free volume
[1] Manuel S A, Nahm K S 2006 Polymer 47 5952
[2] Ahmad S 2009 Ionics 15 309
[3] [4] [5] Fergus J W 2010 J. Power Sources 195 4554
[6] [7] Fenton D E, Parker J M, Wright P V 1973 Polymer 14 589
[8] Croce F, Appetecchi G B, Persi L, Scrosati B 1998 Nature 394 456
[9] [10] [11] Forsyth M, MacFarlane D R, Best A, Adebahr J, Jacobsson P, Hill A J 2002 Solid State Ionics 147 203
[12] Adebahr J, Ciccosillo N, Shekibi Y, MacFarlane D R, Hill A J, Forsyth M 2006 Solid State Ionics 177 827
[13] [14] Kim J W, Ji K S, Lee J P, Park J W 2003 J. Power Sources 119-121 415
[15] [16] Agrawal S, Singh M, Tripathi M, Dwivedi M, Pandey K 2009 J. Mater. Sci. 44 6060
[17] [18] Kster T K J, Wllen V L 2010 Solid State Ionics 181 489
[19] [20] [21] Xiong H M, Zhao X, Chen J S 2001 J. Phys. Chem. B 105 10169
[22] [23] Bhattacharya S, Ghosh A 2008 J. Nanosci. Nanotechnol. 8 1922
[24] [25] Lin D,Wang S J 1992 Acta Phys. Sin. 41 668 (in Chinese)[林 东、王少阶 1992 41 668]
[26] [27] Wang B, Wang Z F, Zhang M, Liu W H, Wang S J 2002 Macromolecules 35 3993
[28] [29] Zhou W, Wang J J, Gong Z L, Gong J, Qi N, Wang B 2009 Appl. Phys. Lett. 94 021904
[30] Kobayashi Y, Zheng W, Meyer E F, McGervey J D, Jamieson A M, Simha R 1989 Macromolecules 22 2302
[31] [32] Jean Y C 1990 Microchem. J. 42 72
[33] [34] Suzuki T, Oki Y, Numajiri M, Miura T, Kondo K, Ito Y 1992 J. Polym. Sci. B 30 517
[35] [36] Peng Z L, Wang B, Li S Q, Wang S J, Liu H, Xie H Q 1994 Phys. Lett. A 194 228
[37] [38] [39] Wang B, Peng Z L, Wu W, Li S Q, Wang S J, Liu H, Xie H Q 1996 Acta Phys. Sin. 45 153 (in Chinese)[王 波、彭治林、吴 弯、李世清、王少阶、刘 浩、谢洪泉 1996 45 153]
[40] [41] Stephan A M, Kumar T P, Kulandainathan M A, Lakshmi N A 2009 J. Phys. Chem. B 113 1963
[42] [43] Li Z R, Meng Q A, Guan D H, Wang G 1999 Acta Phys. Sin. 48 1175 (in Chinese)[李子荣、孟庆安、管荻华、王 刚 1999 48 1175]
[44] [45] Wang L, Yang W, Wang J, Evans D G 2009 Solid State Ionics 180 392
[46] [47] Przyluski J, Siekierski M,Wieczorek W 1995 Electrochim. Acta 40 2101
[48] Wieczorek W, Zalewska A, Siekierski M, Przyluski J 1996 Solid State Ionics 86-88 357
[49] [50] [51] Kao H M, Tsai Y Y, Chao S W 2005 Solid State Ionics 176 1261
[52] Hu L, Tang Z, Zhang Z 2007 J. Power Sources 166 226
[53] [54] Wu R J 1987 Modern Analytical Techniques in Polymer Application (Shanghai: Shanghai Science and Technology Press) p300 (in Chiese) [吴人杰 1987现代分析技术在高聚物中的应用 (上海:上海科学技术出版社) 第300页]
[55] [56] Wieczorek W, Lipka P, Z ukowska G, Wyci Dś lik H 1998 J. Phys. Chem. B 102 6968
[57] [58] [59] Wieczorek W, Raducha D, Zalewska A, Stevens J R 1998 J. Phys. Chem. B 102 8725
[60] Dlubek G, Saarinen K, Fretwell H M 1998 J. Polym. Sci. B 36 1513
[61] [62] [63] Wang H M, Chen Z, Fang P F, Wang S J, Xu Y Z, Fang Z P 2008 J. Appl. Polym. Sci. 108 1557
[64] [65] Ji K S, Moon H S, Kim J W, Park J W 2003 J. Power Sources 117 124
[66] Murday J S, Cotts R M 1968 J. Chem. Phys. 48 4938
[67] -
[1] Manuel S A, Nahm K S 2006 Polymer 47 5952
[2] Ahmad S 2009 Ionics 15 309
[3] [4] [5] Fergus J W 2010 J. Power Sources 195 4554
[6] [7] Fenton D E, Parker J M, Wright P V 1973 Polymer 14 589
[8] Croce F, Appetecchi G B, Persi L, Scrosati B 1998 Nature 394 456
[9] [10] [11] Forsyth M, MacFarlane D R, Best A, Adebahr J, Jacobsson P, Hill A J 2002 Solid State Ionics 147 203
[12] Adebahr J, Ciccosillo N, Shekibi Y, MacFarlane D R, Hill A J, Forsyth M 2006 Solid State Ionics 177 827
[13] [14] Kim J W, Ji K S, Lee J P, Park J W 2003 J. Power Sources 119-121 415
[15] [16] Agrawal S, Singh M, Tripathi M, Dwivedi M, Pandey K 2009 J. Mater. Sci. 44 6060
[17] [18] Kster T K J, Wllen V L 2010 Solid State Ionics 181 489
[19] [20] [21] Xiong H M, Zhao X, Chen J S 2001 J. Phys. Chem. B 105 10169
[22] [23] Bhattacharya S, Ghosh A 2008 J. Nanosci. Nanotechnol. 8 1922
[24] [25] Lin D,Wang S J 1992 Acta Phys. Sin. 41 668 (in Chinese)[林 东、王少阶 1992 41 668]
[26] [27] Wang B, Wang Z F, Zhang M, Liu W H, Wang S J 2002 Macromolecules 35 3993
[28] [29] Zhou W, Wang J J, Gong Z L, Gong J, Qi N, Wang B 2009 Appl. Phys. Lett. 94 021904
[30] Kobayashi Y, Zheng W, Meyer E F, McGervey J D, Jamieson A M, Simha R 1989 Macromolecules 22 2302
[31] [32] Jean Y C 1990 Microchem. J. 42 72
[33] [34] Suzuki T, Oki Y, Numajiri M, Miura T, Kondo K, Ito Y 1992 J. Polym. Sci. B 30 517
[35] [36] Peng Z L, Wang B, Li S Q, Wang S J, Liu H, Xie H Q 1994 Phys. Lett. A 194 228
[37] [38] [39] Wang B, Peng Z L, Wu W, Li S Q, Wang S J, Liu H, Xie H Q 1996 Acta Phys. Sin. 45 153 (in Chinese)[王 波、彭治林、吴 弯、李世清、王少阶、刘 浩、谢洪泉 1996 45 153]
[40] [41] Stephan A M, Kumar T P, Kulandainathan M A, Lakshmi N A 2009 J. Phys. Chem. B 113 1963
[42] [43] Li Z R, Meng Q A, Guan D H, Wang G 1999 Acta Phys. Sin. 48 1175 (in Chinese)[李子荣、孟庆安、管荻华、王 刚 1999 48 1175]
[44] [45] Wang L, Yang W, Wang J, Evans D G 2009 Solid State Ionics 180 392
[46] [47] Przyluski J, Siekierski M,Wieczorek W 1995 Electrochim. Acta 40 2101
[48] Wieczorek W, Zalewska A, Siekierski M, Przyluski J 1996 Solid State Ionics 86-88 357
[49] [50] [51] Kao H M, Tsai Y Y, Chao S W 2005 Solid State Ionics 176 1261
[52] Hu L, Tang Z, Zhang Z 2007 J. Power Sources 166 226
[53] [54] Wu R J 1987 Modern Analytical Techniques in Polymer Application (Shanghai: Shanghai Science and Technology Press) p300 (in Chiese) [吴人杰 1987现代分析技术在高聚物中的应用 (上海:上海科学技术出版社) 第300页]
[55] [56] Wieczorek W, Lipka P, Z ukowska G, Wyci Dś lik H 1998 J. Phys. Chem. B 102 6968
[57] [58] [59] Wieczorek W, Raducha D, Zalewska A, Stevens J R 1998 J. Phys. Chem. B 102 8725
[60] Dlubek G, Saarinen K, Fretwell H M 1998 J. Polym. Sci. B 36 1513
[61] [62] [63] Wang H M, Chen Z, Fang P F, Wang S J, Xu Y Z, Fang Z P 2008 J. Appl. Polym. Sci. 108 1557
[64] [65] Ji K S, Moon H S, Kim J W, Park J W 2003 J. Power Sources 117 124
[66] Murday J S, Cotts R M 1968 J. Chem. Phys. 48 4938
[67]
计量
- 文章访问数: 8021
- PDF下载量: 757
- 被引次数: 0