搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究

蒋梅燕 王平 陈爱盛 陈成克 李晓 鲁少华 胡晓君

引用本文:
Citation:

纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究

蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君

Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes

Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun
PDF
HTML
导出引用
  • 金刚石/石墨烯复合电极因能发挥金刚石组分的低背景电流和宽电势窗口, 且兼具石墨组分的高电化学活性, 引起了人们的广泛关注. 本文采用热丝化学气相沉积方法, 通过调控短时生长时间, 在纳米金刚石单颗粒层表面的竖立石墨烯片中嵌入纳米金刚石, 形成复合三维电极. 结果表明, 当竖立石墨烯片顶部生长了纳米金刚石时, 电极显示较宽的电势窗口(3.59 V)和极低的背景电流(1.27 mA/cm2), 片层顶部少层石墨包覆纳米金刚石晶粒的复合结构是拓宽电势窗口和降低背景电流的关键. 随着生长时间延长, 竖立片层长大, 纳米金刚石晶粒嵌入到片层中, 构建了新型的纳米金刚石/石墨烯复合竖立片层结构; 有序的石墨结构使得电化学活性面积增大为677.19 μC/cm2和比电容增至627.34 μF/cm2, 石墨组分增多使得电势窗口变窄, 嵌入片层中的纳米金刚石有效地降低背景电流. 本研究提供了一种热丝化学气相沉积方法制备纳米金刚石/石墨烯复合三维电极的新方法, 并为充分发挥金刚石/石墨烯复合薄膜的协同效应提供了一种新思路.
    Diamond/graphene composite three-dimensional electrode has attracted extensive attention because of its low background current, wide potential window from diamond component, and high electrochemical activity from graphite component. In this work, by using the hot wire chemical vapor deposition method, nano diamonds are embedded in the vertical graphene sheet on the surface of single particle layer of nano diamond by regulating the short-term growth time to form a composite three-dimensional electrode. The results show that the electrode exhibits a wide potential window (3.59 V) and a very low background current (1.27 mA/cm2) when nano-diamond crystals grow on the top of the vertical graphene sheet. The composite structure of nano-diamond crystals coated with graphite on the top of the graphene sheet is the key to broadening the potential window and reducing the background current. With the increase of growth time, the vertical graphene sheet grows and nano-diamond grains are embedded into the lamellae, and a novel nano-diamond/graphene composite vertical lamellae structure is constructed. The ordered graphite structure increases the electrochemical active area to 677.19 μC/cm2 and the specific capacitance to 627.34 μF/cm2. The increase of graphite components makes the potential window narrow, and the embedded nano-diamond crystals effectively reduce the background current. This study provides a new method for preparing three-dimensional nanodiamond/graphene composite electrodes by hot wire chemical vapor deposition, and provides a new idea for fully exploiting the synergistic effect of diamond/graphene composite films.
      通信作者: 胡晓君, huxj@zjut.edu.cn
    • 基金项目: 国家自然科学基金联合重点基金(批准号: U1809210)、国家重点研发计划(批准号: 2016YFE0133200)、国家国际科技合作计划(批准号: 2014DFR51160)、浙江省重点研发计划一带一路国际合作项目(批准号: 2018C04021)、国家自然科学基金(批准号: 50972129, 50602039, 11504325, 52002351, 52102052)和浙江省自然科学基金(批准号: LQ15A040004, LY18E020013, LGC21E020001)资助的课题.
      Corresponding author: Hu Xiao-Jun, huxj@zjut.edu.cn
    • Funds: Project supported by the Joint key Funds of National Natural Science Foundation of China (Grant No. U1809210), the National Key R&D Program of China (Grant No. 2016YFE0133200), the National International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039, 11504325, 52002351, 52102052), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004, LY18E020013, LGC21E020001).
    [1]

    Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N 2018 Appl. Surf. Sci. 452 223Google Scholar

    [2]

    Zhai Z, Huang N, Jiang X 2022 Curr. Opin. Electrochem. 32 100884Google Scholar

    [3]

    Chen C K, He Z, Xu A, Li X, Jiang M, Xu T, Yan B, Hu X 2021 Funct. Diamond 1 117Google Scholar

    [4]

    胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101Google Scholar

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101Google Scholar

    [5]

    潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410Google Scholar

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410Google Scholar

    [6]

    胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊 2004 53 2014Google Scholar

    Hu X J, Li R B, Shen H S, He X C, Deng W, Luo L X 2004 Acta Phys. Sin. 53 2014Google Scholar

    [7]

    Yang N, Yu S, Macpherson J V, Einaga Y, Zhao H, Zhao G, Swain G M, Jiang X 2019 Chem. Soc. Rev. 48 157Google Scholar

    [8]

    Gao F, Nebel C E 2016 ACS Appl. Mater. Interfaces 8 28244Google Scholar

    [9]

    Watanabe T, Honda Y, Kanda K, Einaga Y 2014 Phys. Status Solidi A 211 2709Google Scholar

    [10]

    Sun Y, Wu Q, Xu Y, Bai H, Li C, Shi G 2011 J. Mater. Chem. 21 7154Google Scholar

    [11]

    Wei M, Terashima C, Lv M, Fujishima A, Gu Z Z 2009 Chem. Commun. 24 3624Google Scholar

    [12]

    蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君 2019 68 148101Google Scholar

    Jiang M Y, Zhu Z J, Chen C K, Li X, Hu X J 2019 Acta Phys. Sin. 68 148101Google Scholar

    [13]

    王锐, 胡晓君 2014 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [14]

    Sobaszek M, Siuzdak K, Ryl J, Sawczak M, Gupta S, Carrizosa S B, Ficek M, Dec B, Darowicki K, Bogdanowicz R 2017 J. Phys. Chem. C 121 20821Google Scholar

    [15]

    Shen A, Zou Y, Wang Q, Dryfe R A W, Huang X, Dou S, Dai L, Wang S 2014 Angew. Chem. Int. Ed. 53 10804Google Scholar

    [16]

    Kamata T, Kato D, Ida H, Niwa O 2014 Diamond Relat. Mater. 49 25Google Scholar

    [17]

    Garcia-Segura S, Vieira dos Santos E, Martínez Huitle C A 2015 Electrochem. Commun. 59 52Google Scholar

    [18]

    Ayres Z J, Borrill A J, Newland J C, Newton M E, Macpherson Julie. V 2016 Anal. Chem. 88 974Google Scholar

    [19]

    Cobb S J, Ayres Z J, Macpherson J V 2018 Annu. Rev. Anal. Chem. 11 463Google Scholar

    [20]

    Vlasov I, Lebedev O I, Ralchenko V G, Goovaerts E, Bertoni G, Van Tendeloo G, Konov V I 2007 Adv. Mater. 19 4058Google Scholar

    [21]

    Arenal R, Bruno P, Miller D J, Bleuel M, Lal J, Gruen D M 2007 Phys. Rev. B 75 195431Google Scholar

    [22]

    Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H, Lin I N 2012 J. Phys. D:Appl. Phys. 45 365303Google Scholar

    [23]

    Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M, Stamboulis A 2009 ACS Nano 3 1032Google Scholar

    [24]

    Shalini J, Sankaran K J, Dong C L, Lee C Y, Tai N H, Lin I N 2013 Nanoscale 5 1159Google Scholar

    [25]

    Shalini J, Lin Y C, Chang T H, Sankaran K J, Chen H C, Lin I N, Lee C Y, Tai N H 2013 Electrochim. Acta 92 9Google Scholar

    [26]

    Zhai Z, Huang N, Yang B, Wang C, Liu L, Qiu J, Shi D, Yuan Z, Lu Z, Song H, Zhou M, Chen B, Jiang X 2019 J. Phys. Chem. C 123 6018Google Scholar

    [27]

    Yu S, Sankaran K J, Korneychuk S, Verbeeck J, Haenen K, Jiang X, Yang N 2019 Nanoscale 11 17939Google Scholar

    [28]

    邢丽丹, 谢启明, 李伟善 2020 69 228205Google Scholar

    Xing L D, Xie Q M, Li W S 2020 Acta Phys. Sin. 69 228205Google Scholar

    [29]

    Wu, Yang 2002 Nano Lett. 2 355Google Scholar

    [30]

    Tzeng Y, Chen W L, Wu C, Lo J Y, Li C Y 2013 Carbon 53 120Google Scholar

    [31]

    Banerjee D, Sankaran K J, Deshmukh S, Ficek M, Bhattacharya G, Ryl J, Phase D M, Gupta M, Bogdanowicz R, Lin I N, Kanjilal A, Haenen K, Roy S S 2019 J. Phys. Chem. C 123 15458Google Scholar

    [32]

    Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X 2019 Small 15 1901527Google Scholar

    [33]

    Zhou M, Zhai Z, Liu L, Zhang C, Yuan Z, Lu Z, Chen B, Shi D, Yang B, Wei Q, Huang N, Jiang X 2021 Appl. Surf. Sci. 551 149418Google Scholar

    [34]

    Jiang M Y, Ma W C, Han S J, Chen C K, Fan D, Li X, Hu X J 2020 J. Appl. Phys. 127 015301Google Scholar

    [35]

    Jiang M Y, Zhang Z Q, Chen C K, Ma W C, Han S J, Li X, Lu S H, Hu X J 2020 Carbon 168 536Google Scholar

    [36]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J. 2022 PNAS 119 2201451119Google Scholar

    [37]

    Chen C K, Fan D, Xu H J, Jiang M Y, Li X, Lu S H, Ke C C, Hu X J. 2022 Carbon 196 466Google Scholar

    [38]

    胡晓君, 仰宗春 2015 中国专利 ZL 201510149374.4 [2017-04-12]

    Hu X J, Yang Z C 2015 Chin. Patent ZL 201510149374.4 [2017-04-12]

    [39]

    Klauser F, Steinmüller Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Deposition 16 127Google Scholar

    [40]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [41]

    Cançado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [42]

    Shimada T, Sugai T, Fantini C, Souza M, Cançado L G, Jorio A, Pimenta M A, Saito R, Grüneis A, Dresselhaus G, Dresselhaus M S, Ohno Y, Mizutani T, Shinohara H 2005 Carbon 43 1049Google Scholar

    [43]

    Ferrari A C, Robertson J. Resonant 2001 Phys. Rev. B 64 075414Google Scholar

    [44]

    Vora H, Moravec T J 1981 J. Appl. Phys. 52 6151Google Scholar

    [45]

    Konyashin I, Frost D J, Sidorenko D, Orekhov A, Obraztsova E A, Sviridova T A 2020 Diamond Relat. Mater. 109 108017Google Scholar

  • 图 1  不同生长时间下复合薄膜的FESEM形貌和截面图, 内插图为对应样品的静态水接触角图 (a), (e), (i) 1.5 min; (b), (f), (j) 2 min; (c), (g), (k) 2.5 min; (d), (h), (l) 3 min

    Fig. 1.  FESEM images for frontal and cross-sectional morphologies of composite films under different growth times, the inset images show the static water contact angle diagram from the corresponding samples under different growth times: (a), (e), (i) 1.5 min; (b), (f), (j) 2 min; (c), (g), (k) 2.5 min; (d), (h), (l) 3 min.

    图 2  (a) 样品在800到2000 cm–1波数的可见光Raman光谱及拟合曲线; (b) 样品在2200到3100 cm–1波数的可见光Raman光谱; (c) 样品的Raman光谱拟合结果演化图

    Fig. 2.  Visible Raman spectra of the samples at the range of (a) 800–2000 cm–1 and (b) 2200–3100 cm–1. (c) The evolution of several typical parameters from the Raman fitting results.

    图 3  不同生长时间样品的低倍, 高倍和对应白框选定区域的放大图, 及其对应区域的FFT图 (a), (e) 1.5 min; (b), (f) 2 min; (c), (g) 2.5 min; (d), (h) 3 min. (e1)—(h1), (e2)—(h2) 图(e)—(h)中对白框选定区域的放大图以及其相应的对应区域的FFT图

    Fig. 3.  The low- and high-magnificent TEM images with inset corresponding FFTs from samples under different growth times: (a), (e) 1.5 min; (b), (f) 2 min; (c), (g) 2.5 min; (d), (h) 3 min. (e1)–(h1), (e2)–(h2) are enlarged images and corresponding FFTs of the selected areas in the corresponding white boxes in Figure (e)–(h).

    图 4  不同生长时间的NDs-VGs-SPL薄膜电极(a)在1 M KCl体系中的电势窗口和背景电流和(b)在 1 mM K3Fe(CN)6+1 M KCl 体系中以 100 mV/s 扫速下的循环伏安图. 图(a)和图(b)插入的表格列出了扫描速度为100 mV/s时的相应参数

    Fig. 4.  Cyclic voltammetry curves for NDs-VGs-SPL electrodes in 1 M KCl solution (a) and in 1 mM K3Fe(CN)6+ 1 M KCl solution (b). The inset tables are their corresponding parameters under the scanning rate of 100 mV/s.

    图 5  不同生长时间下复合薄膜电极在0.1—0.5 V/s扫描速率下1 mol/L KOH体系中的循环伏安曲线 (a) NDs-VGs-SPL-1.5; (b) NDs-VGs-SPL-2; (c) NDs-VGs-SPL-2.5; (d) NDs-VGs-SPL-3

    Fig. 5.  Cyclic voltammetry curves for NDs-VGs-SPL electrodes of (a) NDs-VGs-SPL-1.5, (b) NDs-VGs-SPL-2, (c) NDs-VGs-SPL-2.5, (d) NDs-VGs-SPL-3 in 1 M KOH solution under the scanning rate of 0.1–0.5 V/s.

    图 6  (a) 不同生长时间下复合薄膜电极在100 mV/s扫描速率下循环伏安曲线; (b) 复合薄膜电极对应的电容柱状图

    Fig. 6.  (a) Cyclic voltammetry curves for NDs-VGs-SPL electrodes in 1 M KOH solution under the scanning rate of 100 mV/s; (b) capacitance histograms corresponding to NDs-VGs-SPL electrodes.

    表 1  Raman光谱拟合结果汇总

    Table 1.  Summary of the data from the fitted Raman spectra.

    样品1332
    /arb. units
    D'
    /arb. units
    G
    /arb. units
    FWHMG
    /cm–1
    D'
    /arb. units
    2D
    /arb. units
    ITPA/ISUMI2D/IG
    1.5 min0.220.580.4390.560.170.440.40
    2.0 min0.840.7344.850.260.570.350.65
    2.5 min0.850.4834.120.220.310.300.63
    3.0 min0.920.6633.400.210.760.281.14
    注: 表格中“—”符号表示Raman光谱中未检测到此峰位.
    下载: 导出CSV
    Baidu
  • [1]

    Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N 2018 Appl. Surf. Sci. 452 223Google Scholar

    [2]

    Zhai Z, Huang N, Jiang X 2022 Curr. Opin. Electrochem. 32 100884Google Scholar

    [3]

    Chen C K, He Z, Xu A, Li X, Jiang M, Xu T, Yan B, Hu X 2021 Funct. Diamond 1 117Google Scholar

    [4]

    胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101Google Scholar

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101Google Scholar

    [5]

    潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410Google Scholar

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410Google Scholar

    [6]

    胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊 2004 53 2014Google Scholar

    Hu X J, Li R B, Shen H S, He X C, Deng W, Luo L X 2004 Acta Phys. Sin. 53 2014Google Scholar

    [7]

    Yang N, Yu S, Macpherson J V, Einaga Y, Zhao H, Zhao G, Swain G M, Jiang X 2019 Chem. Soc. Rev. 48 157Google Scholar

    [8]

    Gao F, Nebel C E 2016 ACS Appl. Mater. Interfaces 8 28244Google Scholar

    [9]

    Watanabe T, Honda Y, Kanda K, Einaga Y 2014 Phys. Status Solidi A 211 2709Google Scholar

    [10]

    Sun Y, Wu Q, Xu Y, Bai H, Li C, Shi G 2011 J. Mater. Chem. 21 7154Google Scholar

    [11]

    Wei M, Terashima C, Lv M, Fujishima A, Gu Z Z 2009 Chem. Commun. 24 3624Google Scholar

    [12]

    蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君 2019 68 148101Google Scholar

    Jiang M Y, Zhu Z J, Chen C K, Li X, Hu X J 2019 Acta Phys. Sin. 68 148101Google Scholar

    [13]

    王锐, 胡晓君 2014 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [14]

    Sobaszek M, Siuzdak K, Ryl J, Sawczak M, Gupta S, Carrizosa S B, Ficek M, Dec B, Darowicki K, Bogdanowicz R 2017 J. Phys. Chem. C 121 20821Google Scholar

    [15]

    Shen A, Zou Y, Wang Q, Dryfe R A W, Huang X, Dou S, Dai L, Wang S 2014 Angew. Chem. Int. Ed. 53 10804Google Scholar

    [16]

    Kamata T, Kato D, Ida H, Niwa O 2014 Diamond Relat. Mater. 49 25Google Scholar

    [17]

    Garcia-Segura S, Vieira dos Santos E, Martínez Huitle C A 2015 Electrochem. Commun. 59 52Google Scholar

    [18]

    Ayres Z J, Borrill A J, Newland J C, Newton M E, Macpherson Julie. V 2016 Anal. Chem. 88 974Google Scholar

    [19]

    Cobb S J, Ayres Z J, Macpherson J V 2018 Annu. Rev. Anal. Chem. 11 463Google Scholar

    [20]

    Vlasov I, Lebedev O I, Ralchenko V G, Goovaerts E, Bertoni G, Van Tendeloo G, Konov V I 2007 Adv. Mater. 19 4058Google Scholar

    [21]

    Arenal R, Bruno P, Miller D J, Bleuel M, Lal J, Gruen D M 2007 Phys. Rev. B 75 195431Google Scholar

    [22]

    Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H, Lin I N 2012 J. Phys. D:Appl. Phys. 45 365303Google Scholar

    [23]

    Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M, Stamboulis A 2009 ACS Nano 3 1032Google Scholar

    [24]

    Shalini J, Sankaran K J, Dong C L, Lee C Y, Tai N H, Lin I N 2013 Nanoscale 5 1159Google Scholar

    [25]

    Shalini J, Lin Y C, Chang T H, Sankaran K J, Chen H C, Lin I N, Lee C Y, Tai N H 2013 Electrochim. Acta 92 9Google Scholar

    [26]

    Zhai Z, Huang N, Yang B, Wang C, Liu L, Qiu J, Shi D, Yuan Z, Lu Z, Song H, Zhou M, Chen B, Jiang X 2019 J. Phys. Chem. C 123 6018Google Scholar

    [27]

    Yu S, Sankaran K J, Korneychuk S, Verbeeck J, Haenen K, Jiang X, Yang N 2019 Nanoscale 11 17939Google Scholar

    [28]

    邢丽丹, 谢启明, 李伟善 2020 69 228205Google Scholar

    Xing L D, Xie Q M, Li W S 2020 Acta Phys. Sin. 69 228205Google Scholar

    [29]

    Wu, Yang 2002 Nano Lett. 2 355Google Scholar

    [30]

    Tzeng Y, Chen W L, Wu C, Lo J Y, Li C Y 2013 Carbon 53 120Google Scholar

    [31]

    Banerjee D, Sankaran K J, Deshmukh S, Ficek M, Bhattacharya G, Ryl J, Phase D M, Gupta M, Bogdanowicz R, Lin I N, Kanjilal A, Haenen K, Roy S S 2019 J. Phys. Chem. C 123 15458Google Scholar

    [32]

    Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X 2019 Small 15 1901527Google Scholar

    [33]

    Zhou M, Zhai Z, Liu L, Zhang C, Yuan Z, Lu Z, Chen B, Shi D, Yang B, Wei Q, Huang N, Jiang X 2021 Appl. Surf. Sci. 551 149418Google Scholar

    [34]

    Jiang M Y, Ma W C, Han S J, Chen C K, Fan D, Li X, Hu X J 2020 J. Appl. Phys. 127 015301Google Scholar

    [35]

    Jiang M Y, Zhang Z Q, Chen C K, Ma W C, Han S J, Li X, Lu S H, Hu X J 2020 Carbon 168 536Google Scholar

    [36]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J. 2022 PNAS 119 2201451119Google Scholar

    [37]

    Chen C K, Fan D, Xu H J, Jiang M Y, Li X, Lu S H, Ke C C, Hu X J. 2022 Carbon 196 466Google Scholar

    [38]

    胡晓君, 仰宗春 2015 中国专利 ZL 201510149374.4 [2017-04-12]

    Hu X J, Yang Z C 2015 Chin. Patent ZL 201510149374.4 [2017-04-12]

    [39]

    Klauser F, Steinmüller Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Deposition 16 127Google Scholar

    [40]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [41]

    Cançado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011 Nano Lett. 11 3190Google Scholar

    [42]

    Shimada T, Sugai T, Fantini C, Souza M, Cançado L G, Jorio A, Pimenta M A, Saito R, Grüneis A, Dresselhaus G, Dresselhaus M S, Ohno Y, Mizutani T, Shinohara H 2005 Carbon 43 1049Google Scholar

    [43]

    Ferrari A C, Robertson J. Resonant 2001 Phys. Rev. B 64 075414Google Scholar

    [44]

    Vora H, Moravec T J 1981 J. Appl. Phys. 52 6151Google Scholar

    [45]

    Konyashin I, Frost D J, Sidorenko D, Orekhov A, Obraztsova E A, Sviridova T A 2020 Diamond Relat. Mater. 109 108017Google Scholar

  • [1] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石.  , 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能.  , 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [3] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能.  , 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [4] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能.  , 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能.  , 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [6] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能.  , 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [7] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究.  , 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [8] 郝卫苗, 杨小宝. 硫修饰对纳米金刚石光电性能调控的理论研究.  , 2015, 64(5): 056102. doi: 10.7498/aps.64.056102
    [9] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究.  , 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [10] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究.  , 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [11] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响.  , 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [12] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [13] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响.  , 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响.  , 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究.  , 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [16] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射.  , 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [17] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响.  , 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响.  , 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [20] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变.  , 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
计量
  • 文章访问数:  4324
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-06-20
  • 上网日期:  2022-09-21
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map