Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability

Sun Wei An Wei-Ming Zhong Jia-Yong

Citation:

Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability

Sun Wei, An Wei-Ming, Zhong Jia-Yong
PDF
HTML
Get Citation
  • Kelvin-Helmholtz instability is the basic physical process of fluids and plasmas. It is widely present in natural, astrophysical, and high energy density physical phenomena. With the construction of strong laser facilities, the research on high energy density physics has gained new impetus. However, in recent years the magnetized Kelvin-Helmholtz instability was rarely studied experimentally. In this work, we propose a new experimental scheme, in which a long-pulsed nanosecond laser beam is generated by a domestic starlight III laser facility. The whole target consists of two parts: the upper part that is the CH modulation layer with lower density, and the lower part that is the Al modulation layer with higher density. The laser beam is injected from one side of the CH modulation layer and generates a CH plasma outflow at the back of the target. During the transmission of the CH plasma outflow, the Al modulation layer is radiated and ionized, which makes the Al modulation layer generate an Al plasma outflow. The interaction between the Al plasma outflow and the CH plasma outflow produces a velocity shear layer, and then Kelvin-Helmholtz instability will gradually form near the Al modulation layer. In this paper, the open-source FLASH simulation program is used to conduct a two-dimensional numerical simulation of the Kelvin-Helmholtz instability generated by the laser-driven modulation target. We use the FLASH code, which is an adaptive mesh refinement program, developed by the Flash Center at the University of Chicago, and is well-known in astrophysics and space geophysics, to create a reference to the magnetohydrodynamic solution in our experiment. At present, this code introduces a complete high-energy-density physical modeling module, which is especially suitable for simulating intense laser ablation experiments. The equation of state and opacity tables of targets are based on the IONMIX4 database. The evolution of Kelvin-Helmholtz vortices, separately, in the Biermann self-generated magnetic field, the external magnetic field, and no magnetic field are investigated and compared with each other. It is found that the self-generated magnetic field hardly changes the morphology of the Kelvin-Helmholtz vortex during the evolution of Kelvin-Helmholtz instability. The external magnetic field parallel to the fluid direction can stabilize the shear flow. The magnetic field mainly stabilizes the long wave disturbance. The study results in this work can provide theoretical guidance for the next step of the Kelvin-Helmholtz experiment under a strong magnetic environment in the high energy density laser facility.
      Corresponding author: Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930108), the Science Challenge Project, China (Grant No.TZ2016005), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25030700)
    [1]

    Li X, Zhang J, Yang S, Hou Y, Erdelyi R 2018 Sci. Rep. 8 8136Google Scholar

    [2]

    Steinbusch B, Gibbon P, Sydora R D 2016 Phys. Plasmas 23 052119Google Scholar

    [3]

    Price D J, Rosswog S 2006 Science 312 719Google Scholar

    [4]

    Kiuchi K, Cerdá-Durán P, Kyutoku K, Sekiguchi Y, Shibata M 2015 Phys. Rev. D 92 124034Google Scholar

    [5]

    Foullon C, Verwichte E, Nakariakov V M, Nykyri K, Farrugia C J 2011 Astrophys. J. Lett. 729 L8Google Scholar

    [6]

    Li X, Narayan R 2004 Astrophys. J. 601 414Google Scholar

    [7]

    Yuan D, Shen Y, Liu Y, Li H, Feng X, Keppens R 2019 Astrophys. J. Lett. 884 L51Google Scholar

    [8]

    Ershkovich A I 1980 Space Sci. Rev. 25 3Google Scholar

    [9]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. Lett. 73 2324Google Scholar

    [10]

    Hammel B A, Haan S W, Clark D S, Edwards M J, Langer S H, Marinak M M, Patel M V, Salmonson J D, Scott H A 2010 High Energy Dens. Phys. 6 171Google Scholar

    [11]

    Clark D S, Haan S W, Cook A W, Edwards M J, Hammel B A, Koning J M, Marinak M M 2011 Phys. Plasmas 18 082701Google Scholar

    [12]

    Zhou Y, Remington B A, Robey H F, Cook A W, Glendinning S G, Dimits A, Buckingham A C, Zimmerman G B, Burke E W, Peyser T A, Cabot W, Eliason D 2003 Phys. Plasmas 10 1883Google Scholar

    [13]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [14]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press) pp481−512

    [15]

    范征锋, 叶文华, 孙彦乾, 郑炳松, 李英骏, 王立锋 2009 58 6381Google Scholar

    Fan Z F, Ye W H, Sun Y Q, Zheng B S, Li Y J, Wang L F 2009 Acta Phys. Sin. 58 6381Google Scholar

    [16]

    范征锋, 叶文华, 李英骏, 王立锋 2009 58 4787Google Scholar

    Fan Z F, Ye W H, Li Y J, Wang L F 2009 Acta Phys. Sin. 58 4787Google Scholar

    [17]

    Mak J, Griffiths S D, Hughes D W 2017 Phys. Rev. Fluid 2 113701Google Scholar

    [18]

    Liu Y, Chen Z H, Zhang H H, Lin Z Y 2018 Phys. Fluids 30 044102Google Scholar

    [19]

    Harding E C, Hansen J F, Hurricane O A, Drake R P, Robey H F, Kuranz C, Gillespie R S 2009 Phys. Rev. Lett. 103 045005Google Scholar

    [20]

    Wan W C, Malamud G, Shimony A, Stefano C A, Trantham M R, Klein S R, Drake R P 2015 Phys. Rev. Lett. 115 145001Google Scholar

    [21]

    Wan W C, Malamud G, Shimony A, Di Stefano C A, Trantham M R, Klein S R, Kuranz C C 2017 Phys. Plasmas 24 055705Google Scholar

    [22]

    Sun W, Zhong J, Zhang S, Tong B W, Wang L F, Zhao K G, Liu J Y, Han B, Zhu B J, Yuan D W, Yuan X X, Zhang Z, Li Y T, Zhang Q, Peng J M, Wang J Z, Ping Y L, Xing C Q, Wei H G, Liang G Y, Xie Z Y, Wang C, Zhao G, Zhang J 2019 High Energy Dens. Phys. 31 47Google Scholar

    [23]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, Macneice P, Rosner R, Truran J W, Tufo H M 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [24]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [25]

    Rutter E M, Grosskopf M J, Malamud G, Kuranz C C, Harding E C, Keiter P A, Drake R P 2013 High Energy Dens. Phys. 9 148Google Scholar

    [26]

    Farmer W A, Koning J M, Strozzi D J, Hinkel D E, Berzak Hopkins L F, Jones O S, Rosen M D 2017 Phys. Plasmas 24 052703Google Scholar

    [27]

    Woolsey N C, Courtois C, Dendy R O 2004 Plasma Phys. Controlled Fusion 46 B397Google Scholar

  • 图 1  利用激光驱动调制靶产生KHI的实验方案(虚线框是模拟区域)

    Figure 1.  Experimental scheme for KHI using the laser-driven modulation targets. The dashed line box is the simulation domain.

    图 2  无磁场时不同时刻的电子密度分布图 (a) 20 ns; (b) 40 ns; (c) 60 ns; (d) 80 ns

    Figure 2.  Snapshots of the electron density distribution at different times without magnetic field: (a) 20 ns; (b) 40 ns; (c) 60 ns; (d) 80 ns.

    图 3  x方向外加0.4 T磁场时不同时刻的电子密度分布图 (a) 0 ns; (b) 40 ns; (c) 80 ns; (d) 120 ns

    Figure 3.  Snapshots of the electron density distribution at different times with 0.4 T in x direction: (a) 0 ns; (b) 40 ns; (c) 80 ns; (d) 120 ns.

    图 4  (a) 考虑毕尔曼自生磁场, 在120 ns时毕尔曼自生磁场强度的分布情况; (b)忽略毕尔曼自生磁场, 在120 ns时外加磁场在模拟平面的分布情况

    Figure 4.  (a) Considering the Biermann self-generated magnetic field, the distribution of the Bierman self-generated magnetic field strength at 120 ns; (b) ignoring the Bierman self-generated magnetic field, the distribution of the applied magnetic field in the simulated plane at 120 ns.

    图 5  x方向外加0.4 T磁场时不同时刻外加磁场的分布情况 (a)静态参考图像(0 ns); (b) 40 ns的磁场分布图像; (c) 80 ns的磁场分布图像; (d) 120 ns的磁场分布图像

    Figure 5.  Snapshots of the magnetic field distribution at different delay times with 0.4 T in x direction: (a) Reference image (0 ns); (b) 40 ns. (c) 80 ns; (d) 120 ns

    图 6  (a) 120 ns时磁压力的分布情况; (b) 120 ns的磁张力的分布情况

    Figure 6.  (a) Distribution of magnetic pressure at 120 ns; (b) distribution of magnetic tension at 120 ns.

    图 7  (a) 有无外加磁场的情况下, KHI涡旋的生长情况; (b) x方向外加0.4 T磁场, 初始扰动波长不同时, KHI涡旋的生长情况

    Figure 7.  (a) Growth of the KHI vortex with or without an external magnetic field; (b) the growth of the KHI vortex when a 0.4 T magnetic field is applied in the x direction and the initial disturbance wavelength is different.

    Baidu
  • [1]

    Li X, Zhang J, Yang S, Hou Y, Erdelyi R 2018 Sci. Rep. 8 8136Google Scholar

    [2]

    Steinbusch B, Gibbon P, Sydora R D 2016 Phys. Plasmas 23 052119Google Scholar

    [3]

    Price D J, Rosswog S 2006 Science 312 719Google Scholar

    [4]

    Kiuchi K, Cerdá-Durán P, Kyutoku K, Sekiguchi Y, Shibata M 2015 Phys. Rev. D 92 124034Google Scholar

    [5]

    Foullon C, Verwichte E, Nakariakov V M, Nykyri K, Farrugia C J 2011 Astrophys. J. Lett. 729 L8Google Scholar

    [6]

    Li X, Narayan R 2004 Astrophys. J. 601 414Google Scholar

    [7]

    Yuan D, Shen Y, Liu Y, Li H, Feng X, Keppens R 2019 Astrophys. J. Lett. 884 L51Google Scholar

    [8]

    Ershkovich A I 1980 Space Sci. Rev. 25 3Google Scholar

    [9]

    Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Haan S W, Suter L J 1994 Phys. Rev. Lett. 73 2324Google Scholar

    [10]

    Hammel B A, Haan S W, Clark D S, Edwards M J, Langer S H, Marinak M M, Patel M V, Salmonson J D, Scott H A 2010 High Energy Dens. Phys. 6 171Google Scholar

    [11]

    Clark D S, Haan S W, Cook A W, Edwards M J, Hammel B A, Koning J M, Marinak M M 2011 Phys. Plasmas 18 082701Google Scholar

    [12]

    Zhou Y, Remington B A, Robey H F, Cook A W, Glendinning S G, Dimits A, Buckingham A C, Zimmerman G B, Burke E W, Peyser T A, Cabot W, Eliason D 2003 Phys. Plasmas 10 1883Google Scholar

    [13]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [14]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press) pp481−512

    [15]

    范征锋, 叶文华, 孙彦乾, 郑炳松, 李英骏, 王立锋 2009 58 6381Google Scholar

    Fan Z F, Ye W H, Sun Y Q, Zheng B S, Li Y J, Wang L F 2009 Acta Phys. Sin. 58 6381Google Scholar

    [16]

    范征锋, 叶文华, 李英骏, 王立锋 2009 58 4787Google Scholar

    Fan Z F, Ye W H, Li Y J, Wang L F 2009 Acta Phys. Sin. 58 4787Google Scholar

    [17]

    Mak J, Griffiths S D, Hughes D W 2017 Phys. Rev. Fluid 2 113701Google Scholar

    [18]

    Liu Y, Chen Z H, Zhang H H, Lin Z Y 2018 Phys. Fluids 30 044102Google Scholar

    [19]

    Harding E C, Hansen J F, Hurricane O A, Drake R P, Robey H F, Kuranz C, Gillespie R S 2009 Phys. Rev. Lett. 103 045005Google Scholar

    [20]

    Wan W C, Malamud G, Shimony A, Stefano C A, Trantham M R, Klein S R, Drake R P 2015 Phys. Rev. Lett. 115 145001Google Scholar

    [21]

    Wan W C, Malamud G, Shimony A, Di Stefano C A, Trantham M R, Klein S R, Kuranz C C 2017 Phys. Plasmas 24 055705Google Scholar

    [22]

    Sun W, Zhong J, Zhang S, Tong B W, Wang L F, Zhao K G, Liu J Y, Han B, Zhu B J, Yuan D W, Yuan X X, Zhang Z, Li Y T, Zhang Q, Peng J M, Wang J Z, Ping Y L, Xing C Q, Wei H G, Liang G Y, Xie Z Y, Wang C, Zhao G, Zhang J 2019 High Energy Dens. Phys. 31 47Google Scholar

    [23]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, Macneice P, Rosner R, Truran J W, Tufo H M 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [24]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [25]

    Rutter E M, Grosskopf M J, Malamud G, Kuranz C C, Harding E C, Keiter P A, Drake R P 2013 High Energy Dens. Phys. 9 148Google Scholar

    [26]

    Farmer W A, Koning J M, Strozzi D J, Hinkel D E, Berzak Hopkins L F, Jones O S, Rosen M D 2017 Phys. Plasmas 24 052703Google Scholar

    [27]

    Woolsey N C, Courtois C, Dendy R O 2004 Plasma Phys. Controlled Fusion 46 B397Google Scholar

  • [1] Sun Wei, Lü Chong, Lei Zhu, Wang Zhao, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets. Acta Physica Sinica, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] Zhao Xin-Li, Ma Guo-Liang, Ma Yu-Gang. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy. Acta Physica Sinica, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [3] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] Cao Yi-Gang, Fu Meng-Meng, Yang Xi-Chang, Li Deng-Feng, Wang Xiao-Xia. Effect of thermal conduction on Kelvin-Helmholtz instability in straight pipe with different cross-sections. Acta Physica Sinica, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [5] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [6] Li Kun, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong, Wang Xin, Zhang Jin-Ying, Li Zhuo. Underwater ranging with intensity modulated 532 nm laser source. Acta Physica Sinica, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [7] Shi Qi-Chen, Zhao Zhi-Jie, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Mechanism of suppressing Kelvin-Helmholtz instability by flowing magnetic field. Acta Physica Sinica, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [8] Bi Hai-Liang, Wei Lai, Fan Dong-Mei, Zheng Shu, Wang Zheng-Xiong. Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas. Acta Physica Sinica, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [9] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [10] Li Yuan, Luo Xi-Sheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability. Acta Physica Sinica, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] Zhang Wen. Micro-gravity effect in a magnetic field. Acta Physica Sinica, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [12] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [13] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Li Ying-Jun. Study on the Kelvin-Helmholtz instability in two-dimensional incompressible fluid. Acta Physica Sinica, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [14] Wang Li-Feng, Teng Ai-Ping, Ye Wen-Hua, Fan Zheng-Feng, Tao Ye-Sheng, Lin Chuan-Dong, Li Ying-Jun. Velocity gradient in Kelvin-Helmholtz instability for supersonic fluid. Acta Physica Sinica, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [15] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Sun Yan-Qian, Zheng Bing-Song, Li Ying-Jun. Kelvin-Helmholtz instability in compressible fluids. Acta Physica Sinica, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [16] Wang Li-Feng, Ye Wen-Hua, Li Ying-Jun. Second harmonic generation by the Kelvin-Helmholtz instability for two-dimensional incompressible fluid. Acta Physica Sinica, 2008, 57(5): 3038-3043. doi: 10.7498/aps.57.3038
    [17] Zhang Hong-Ying, Wu Shi-Gang. The dynamic process of thin films damage induced by femtosecond laser. Acta Physica Sinica, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [18] Gu Yong-Yu, Zhang Yong-Kang, Zhang Xing-Quan, Shi Jian-Guo. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics. Acta Physica Sinica, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [19] Shi Chun-Hua, Qiu Xi-Jun, An Wei-Ke, Li Ru-Xin. Influence of intense pulse laser on penetron-atomic ionization in muon-catalysed fusion. Acta Physica Sinica, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [20] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
Metrics
  • Abstract views:  5607
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2020
  • Accepted Date:  13 August 2020
  • Available Online:  27 November 2020
  • Published Online:  20 December 2020

/

返回文章
返回
Baidu
map