-
Kelvin-Helmholtz 不稳定性(KHI)增长的动力学分析是一个活跃的研究领域. 本文解析研究了流体在横截面不同的直管道中流动时, 热传导对KHI的影响. 结果表明: 管道中上下流体的界面相对切向速度会随着波数的增加先增加后减小, 并且小的界面热传导系数导致相对切向速度随波数的减小更多, 不同于横截面相同的直管道结果. 另外, 热传导会提高KHI的增长率, 与横截面相同的直管道一致. 研究结果可以为实际管道中流体不稳定性的分析以及管道的通风设计和供暖等工程研究提供一定参考.
-
关键词:
- Kelvin-Helmholtz不稳定性 /
- 热传导 /
- 界面热传导系数
We investigate analytically the effect of thermal conduction on the Kelvin-Helmholtz instability (KHI) in a straight pipe with different cross-sections. The results show that the relative tangential velocity of the interface between the upper and lower fluid in the pipe first increases and then decreases with the increase of the wave number. Furthermore, the smaller coefficient of interfacial heat conduction causes the relative tangential velocity to decrease considerably with the increase of the wave number, which is different from the behavior of the straight pipeline with the same cross-section. In addition, the heat conduction increases the growth rate of KHI, which is in accordance with the scenario of straight pipeline with the same cross-section.-
Keywords:
- Kelvin-Helmholtz instability /
- thermal conduction /
- coefficient of interfacial heat conduction
[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170Google Scholar
[2] Taylor G I 1950 Proc. R. Soc. London, Ser. A 201 192Google Scholar
[3] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[4] Meshkow E E 1969 Fluid Dyn. 4 101Google Scholar
[5] [6] Helmholtz H 1868 Philos. Mag. Ser. 4 36 337Google Scholar
[7] Poujade O, Peybernes M 2010 Phys. Rev. E 81 016316Google Scholar
[8] Horton W, Tajima T, Kamimura T 1987 Phys. Fluids 30 3485Google Scholar
[9] Volovik G E 2002 JETP Lett. 75 418Google Scholar
[10] Blaauwgeers R, Eltsov V B, Eska G, Finne A P, Haley R P, Krusius M, Ruohio J J, Skrbek L, Volovik G E 2002 Phys. Rev. Lett. 89 155301Google Scholar
[11] Cao Y G, Guo H Z, Zhang Z F, Sun Z H, Chow W K 2011 J. Phys. A:Math. Theor. 44 275501Google Scholar
[12] Zhao Y B, Xia M J, Cao Y G 2020 AIP Adv. 10 015056Google Scholar
[13] 夏同军, 董永强, 曹义刚 2013 62 114702Google Scholar
Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 114702Google Scholar
[14] 王立锋, 叶文华, 李英骏 2008 57 3038Google Scholar
Wang L F, Ye W H, Li Y J 2008 Acta Phys. Sin 57 3038Google Scholar
[15] Chen F, Xu A G, Zhang Y D, Zeng Q K 2020 Phys. Fluids 32 104111Google Scholar
[16] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏 2009 58 6381Google Scholar
Wang L F, Ye W H, Fan Z F, Sun Y Q, Zheng B S, Li Y J 2009 Acta Phys. Sin. 58 6381Google Scholar
[17] Gan Y B, Xu A G, Zhang G C, Lin C D, Lai H L, Liu Z P 2019 Front. Phys. 14 43602Google Scholar
[18] Chen J Y, Wang Y C, Zhang W, Qiu L M, Zhang X B 2016 Chem. Eng. Sci. 144 395Google Scholar
[19] Asthana R, Agrawal G S 2007 Physica A 382 389Google Scholar
[20] Awasthi M K, Asthana R, Agrawal G S 2014 Int. J. Heat Mass Transfer 78 251Google Scholar
[21] Barnea D, Taitel Y 1993 Int. J. Multiphase Flow 19 639Google Scholar
[22] Yang X C, Cao Y G 2021 Physica D 424 132950Google Scholar
[23] Kwon H J 2008 KSCE J. Civil Eng. 12 205Google Scholar
[24] Xia T J, Wang H L, Dong Y Q, Guo H Z, Cao Y G 2015 Int. J. Heat Mass Transfer 84 158Google Scholar
[25] Funada T, Joseph D D 2001 J. Fluid Mech. 445 263Google Scholar
[26] Awasthi M K, Asthana R, Agrawal G S 2015 Appl. Mech. Mater. 110 4628Google Scholar
[27] 谢海英 2013 水资源与水工程学报 24 152Google Scholar
Xie H Y 2013 J. Water Resour. Water Eng. 24 152Google Scholar
-
-
[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170Google Scholar
[2] Taylor G I 1950 Proc. R. Soc. London, Ser. A 201 192Google Scholar
[3] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[4] Meshkow E E 1969 Fluid Dyn. 4 101Google Scholar
[5] [6] Helmholtz H 1868 Philos. Mag. Ser. 4 36 337Google Scholar
[7] Poujade O, Peybernes M 2010 Phys. Rev. E 81 016316Google Scholar
[8] Horton W, Tajima T, Kamimura T 1987 Phys. Fluids 30 3485Google Scholar
[9] Volovik G E 2002 JETP Lett. 75 418Google Scholar
[10] Blaauwgeers R, Eltsov V B, Eska G, Finne A P, Haley R P, Krusius M, Ruohio J J, Skrbek L, Volovik G E 2002 Phys. Rev. Lett. 89 155301Google Scholar
[11] Cao Y G, Guo H Z, Zhang Z F, Sun Z H, Chow W K 2011 J. Phys. A:Math. Theor. 44 275501Google Scholar
[12] Zhao Y B, Xia M J, Cao Y G 2020 AIP Adv. 10 015056Google Scholar
[13] 夏同军, 董永强, 曹义刚 2013 62 114702Google Scholar
Xia T J, Dong Y Q, Cao Y G 2013 Acta Phys. Sin. 62 114702Google Scholar
[14] 王立锋, 叶文华, 李英骏 2008 57 3038Google Scholar
Wang L F, Ye W H, Li Y J 2008 Acta Phys. Sin 57 3038Google Scholar
[15] Chen F, Xu A G, Zhang Y D, Zeng Q K 2020 Phys. Fluids 32 104111Google Scholar
[16] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏 2009 58 6381Google Scholar
Wang L F, Ye W H, Fan Z F, Sun Y Q, Zheng B S, Li Y J 2009 Acta Phys. Sin. 58 6381Google Scholar
[17] Gan Y B, Xu A G, Zhang G C, Lin C D, Lai H L, Liu Z P 2019 Front. Phys. 14 43602Google Scholar
[18] Chen J Y, Wang Y C, Zhang W, Qiu L M, Zhang X B 2016 Chem. Eng. Sci. 144 395Google Scholar
[19] Asthana R, Agrawal G S 2007 Physica A 382 389Google Scholar
[20] Awasthi M K, Asthana R, Agrawal G S 2014 Int. J. Heat Mass Transfer 78 251Google Scholar
[21] Barnea D, Taitel Y 1993 Int. J. Multiphase Flow 19 639Google Scholar
[22] Yang X C, Cao Y G 2021 Physica D 424 132950Google Scholar
[23] Kwon H J 2008 KSCE J. Civil Eng. 12 205Google Scholar
[24] Xia T J, Wang H L, Dong Y Q, Guo H Z, Cao Y G 2015 Int. J. Heat Mass Transfer 84 158Google Scholar
[25] Funada T, Joseph D D 2001 J. Fluid Mech. 445 263Google Scholar
[26] Awasthi M K, Asthana R, Agrawal G S 2015 Appl. Mech. Mater. 110 4628Google Scholar
[27] 谢海英 2013 水资源与水工程学报 24 152Google Scholar
Xie H Y 2013 J. Water Resour. Water Eng. 24 152Google Scholar
计量
- 文章访问数: 3911
- PDF下载量: 60
- 被引次数: 0