Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and Simulation of X-ray Lens with Large Diameter Conical Glass Tube

HUA Lu ZHOU Zexian ZHONG Yuchuan ZHANG Jinfu YUAN Tianyu SHI Lulin WANG Zhao CHEN Yupeng WANG Guodong CHENG Yanhong JIN Xuejian LEI Yu WU Xiaoxia WANG Yuyu SUN Tianxi CHENG Rui YANG Jie

Citation:

Design and Simulation of X-ray Lens with Large Diameter Conical Glass Tube

HUA Lu, ZHOU Zexian, ZHONG Yuchuan, ZHANG Jinfu, YUAN Tianyu, SHI Lulin, WANG Zhao, CHEN Yupeng, WANG Guodong, CHENG Yanhong, JIN Xuejian, LEI Yu, WU Xiaoxia, WANG Yuyu, SUN Tianxi, CHENG Rui, YANG Jie
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In high-energy density physics (HEDP) experiments, accurate diagnostics of physical parameters such as electron temperature, plasma density, and ionization state are essential for understanding matter behavior under extreme conditions. X-ray spectroscopic techniques, particularly those employing crystal spectrometers, are widely used to achieve high spectral resolution in these scenarios. However, a common challenge in such experiments lies in the inherently low brightness and poor spatial coherence of laboratory-based X-ray sources, which limit photon throughput and, consequently, diagnostic accuracy. Enhancing the efficiency of X-ray optical transport between the source and the detector is therefore a critical step toward improving overall system performance.Capillary X-ray optics, which function based on the principle of total internal reflection within hollow glass structures, offer promising avenues for beam shaping, collimation, and focusing in the soft to hard X-ray range. These optical devices are typically categorized into polycapillary and monocapillary types. While polycapillary optics are composed of numerous micro-channels and used primarily for collimating or focusing divergent X-rays, monocapillary lenses—consisting of single curved channels—offer more precise beam control and are particularly suited for customized X-ray pathways. Depending on the curvature of the inner reflective surface, monocapillaries are classified into conical, parabolic, and ellipsoidal geometries. In this study, we propose and analyze a novel design of a large-caliber conical glass tube, specifically tailored to address the issue of low light utilization in multi-channel Focusing Spectrographs with Spatial Resolution (FSSR). The proposed conical glass tube, fabricated from a single large-diameter capillary structure, simplifies alignment requirements and reduces the surface manufacturing precision typically demanded by complex aspheric lenses. Its geometric configuration enables the redirection and controlled convergence of X-rays from extended or weak sources, thereby improving photon collection without significantly altering beam divergence.To quantify the performance of this optical system, we developed a detailed mathematical ray-tracing model and implemented it in MATLAB. The model incorporates physical parameters such as capillary inner radius, taper angle, reflection losses, and source-detector geometry. Numerical simulations reveal that the new conical design achieves a 3.1-fold improvement in source utilization efficiency compared to conventional flat or slit-based systems. Furthermore, the lens exhibits a ring-shaped enhancement region in the output intensity profile, which is tunable by adjusting the capillary geometry and source positioning. This feature enables the spatial tailoring of the beam profile, facilitating optimized coupling with downstream spectroscopic components or imaging systems.In conclusion, the proposed large-aperture conical monocapillary X-ray lens provides a practical and efficient solution for enhancing X-ray optical transport in low-brightness source environments. Its simple construction, tunable focusing characteristics, and compatibility with diverse X-ray source types make it a compelling candidate for integration into high-resolution X-ray diagnostic systems, particularly in HEDP and laboratory-scale X-ray spectroscopy. This work not only introduces a novel optical approach but also offers a robust theoretical and simulation framework that can guide future experimental design and application of capillary-based X-ray optics.
  • [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 577 262

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1057 168722

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plsma Phys. Control. Fusion 58 75007

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Rad. 2 296

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. Atom. Spectrom. 34 922

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. Atom. Spectrom. 39 76

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta. Part B: At. Spectrosc. 66 567

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. struct. 48 2869

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. phys. B 19 40(林晓燕 李玉德 孙天希 潘秋丽 2010 中国物理B 19 40)

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50

    [36]

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681 (邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681)

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Rad. 3 289

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun.464 125544

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 888 13

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    Sun T X 2022 Acta Opt. Sin. 42 1134002(孙天希 2022 光学学报 42 1134002)

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347

  • [1] Yuan Tian-Yu, Shao Shang-Kun, Sun Xue-Peng, Li Hui-Quan, Hua Lu, Sun Tian-Xi. Design of a single glass tube optical lens for soft X-ray laser decoherence. Acta Physica Sinica, doi: 10.7498/aps.72.20221917
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, doi: 10.7498/aps.71.20212195
    [3] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, doi: 10.7498/aps.68.20190497
    [4] Zhang Shu-He, Shao Meng, Zhou Jin-Hua. Structured beam designed by ray-optical Poincaré sphere method and its propagation properties. Acta Physica Sinica, doi: 10.7498/aps.67.20180918
    [5] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.64.124703
    [6] Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Focusing performance of hard X-ray single Kinoform lens. Acta Physica Sinica, doi: 10.7498/aps.64.164104
    [7] Liu Zheng-Kun, Qiu Ke-Qiang, Chen Huo-Yao, Liu Ying, Xu Xiang-Dong, Fu Shao-Jun, Wang Chen, An Hong-Hai, Fang Zhi-Heng. Studies on soft X-ray shearing interferometry with double-frequency gratings. Acta Physica Sinica, doi: 10.7498/aps.62.070703
    [8] Chen Can, Tong Ya-Jun, Xie Hong-Lan, Xiao Ti-Qiao. Study of the focusing properties of Laue bent crystal by ray-tracing. Acta Physica Sinica, doi: 10.7498/aps.61.104102
    [9] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, doi: 10.7498/aps.61.148701
    [10] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, doi: 10.7498/aps.60.095202
    [11] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang. Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser. Acta Physica Sinica, doi: 10.7498/aps.59.6200
    [12] Le Zi-Chun, Zhang Ming, Dong Wen, Quan Bi-Sheng, Liu Wei, Liu Kai. Study on the focusing performance of the compound X-ray refractive lenses with fabrication errors. Acta Physica Sinica, doi: 10.7498/aps.59.6284
    [13] Le Zi-Chun, Dong Wen, Liu Wei, Zhang Ming, Liang Jing-Qiu, Quan Bi-Sheng, Liu Kai, Liang Zhong-Zhu, Zhu Pei-Ping, Yi Fu-Ting, Huang Wan-Xia. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses. Acta Physica Sinica, doi: 10.7498/aps.59.1977
    [14] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, doi: 10.7498/aps.54.113
    [15] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, doi: 10.7498/aps.54.4478
    [16] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, doi: 10.7498/aps.54.4979
    [17] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.54.2731
    [18] JIANG SHAO-EN, ZHENG ZHI-JIAN, CHENG JIN-XIU, SUN KE-XU, YANG JIA-MIN, WANG HONG -BIN. EXPERIMENTAL MEASUEMENTS OF X-RAY ENERGY TRANSPORT ALONG CYLINDRAL CAVITY AXIS. Acta Physica Sinica, doi: 10.7498/aps.49.1303
    [19] CHEN BAO-ZHEN. THEORETICAL INVESTIGATION OF X-RAY TRANSMISSION THROUGH A CYLINDER CAPILLARY. Acta Physica Sinica, doi: 10.7498/aps.49.1933
    [20] YANG JIA-MIN, YI RONG-QING, CHEN ZHENG-LIN, SUN KE-XU, DING YAO-NAN, ZHENG ZHI-JIAN, LI CHAO-GUANG, CUI MING-QI, ZHU PEI-PING, CUI CONG-WU. STUDY OF TRANSMISSION GRATING DIFFRACTION EFFICIENCIES FOR SOFT X-RAYS. Acta Physica Sinica, doi: 10.7498/aps.47.613
Metrics
  • Abstract views:  48
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回
Baidu
map