-
In high-energy density physics (HEDP) experiments, accurate diagnostics of physical parameters such as electron temperature, plasma density, and ionization state are essential for understanding matter behavior under extreme conditions. X-ray spectroscopic techniques, particularly those employing crystal spectrometers, are widely used to achieve high spectral resolution in these scenarios. However, a common challenge in such experiments lies in the inherently low brightness and poor spatial coherence of laboratory-based X-ray sources, which limit photon throughput and, consequently, diagnostic accuracy. Enhancing the efficiency of X-ray optical transport between the source and the detector is therefore a critical step toward improving overall system performance.Capillary X-ray optics, which function based on the principle of total internal reflection within hollow glass structures, offer promising avenues for beam shaping, collimation, and focusing in the soft to hard X-ray range. These optical devices are typically categorized into polycapillary and monocapillary types. While polycapillary optics are composed of numerous micro-channels and used primarily for collimating or focusing divergent X-rays, monocapillary lenses—consisting of single curved channels—offer more precise beam control and are particularly suited for customized X-ray pathways. Depending on the curvature of the inner reflective surface, monocapillaries are classified into conical, parabolic, and ellipsoidal geometries. In this study, we propose and analyze a novel design of a large-caliber conical glass tube, specifically tailored to address the issue of low light utilization in multi-channel Focusing Spectrographs with Spatial Resolution (FSSR). The proposed conical glass tube, fabricated from a single large-diameter capillary structure, simplifies alignment requirements and reduces the surface manufacturing precision typically demanded by complex aspheric lenses. Its geometric configuration enables the redirection and controlled convergence of X-rays from extended or weak sources, thereby improving photon collection without significantly altering beam divergence.To quantify the performance of this optical system, we developed a detailed mathematical ray-tracing model and implemented it in MATLAB. The model incorporates physical parameters such as capillary inner radius, taper angle, reflection losses, and source-detector geometry. Numerical simulations reveal that the new conical design achieves a 3.1-fold improvement in source utilization efficiency compared to conventional flat or slit-based systems. Furthermore, the lens exhibits a ring-shaped enhancement region in the output intensity profile, which is tunable by adjusting the capillary geometry and source positioning. This feature enables the spatial tailoring of the beam profile, facilitating optimized coupling with downstream spectroscopic components or imaging systems.In conclusion, the proposed large-aperture conical monocapillary X-ray lens provides a practical and efficient solution for enhancing X-ray optical transport in low-brightness source environments. Its simple construction, tunable focusing characteristics, and compatibility with diverse X-ray source types make it a compelling candidate for integration into high-resolution X-ray diagnostic systems, particularly in HEDP and laboratory-scale X-ray spectroscopy. This work not only introduces a novel optical approach but also offers a robust theoretical and simulation framework that can guide future experimental design and application of capillary-based X-ray optics.
-
Keywords:
- High energy density physics research /
- X-ray transmission efficiency /
- Conical single capillary /
- Ray tracing method /
- X-ray lens
-
[1] Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327
[2] Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 577 262
[3] Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402
[4] Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002
[5] Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003
[6] Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59
[7] Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1057 168722
[8] Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216
[9] Renner O, Šmíd M, Batani D, Antonelli L 2016 Plsma Phys. Control. Fusion 58 75007
[10] Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615
[11] Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213
[12] Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505
[13] Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289
[14] Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Rad. 2 296
[15] Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248
[16] MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049
[17] Gibson W M, Kumakhov M 1993 Proc. SPIE. 172
[18] Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201
[19] Sowa K M, Jany B R, Korecki P 2018 Optica 5 577
[20] Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902
[21] Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. Atom. Spectrom. 34 922
[22] Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. Atom. Spectrom. 39 76
[23] Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808
[24] Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362
[25] Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta. Part B: At. Spectrosc. 66 567
[26] Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843
[27] Alexandre B J, Gomes M G, Real S 2015 Mater. struct. 48 2869
[28] Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. phys. B 19 40(林晓燕 李玉德 孙天希 潘秋丽 2010 中国物理B 19 40)
[29] Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577
[30] Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186
[31] Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45
[32] Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135
[33] Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656
[34] Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803
[35] Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50
[36] Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681 (邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681)
[37] Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91
[38] Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Rad. 3 289
[39] Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun.464 125544
[40] Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762
[41] Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 888 13
[42] Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31
[43] Sun T X 2022 Acta Opt. Sin. 42 1134002(孙天希 2022 光学学报 42 1134002)
[44] Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981
[45] Zymierska D 1996 Acta. Phys. Pol. A 89 347
Metrics
- Abstract views: 48
- PDF Downloads: 4
- Cited By: 0