搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究

孙伟 吕冲 雷柱 仲佳勇

引用本文:
Citation:

磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究

孙伟, 吕冲, 雷柱, 仲佳勇

Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability

Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong
PDF
HTML
导出引用
  • Rayleigh-Taylor不稳定性(RTI)作为流体和等离子体中基础的物理现象, 在天体物理、空间物理以及工程领域扮演着重要角色. 尤其在惯性约束核聚变(ICF)研究中, RTI等宏观流体不稳定性是不可回避的物理问题. 本文利用开源的辐射磁流体模拟程序FLASH对激光驱动调制靶产生的RTI进行了二维的数值模拟, 系统地考察和比较了RTI在无磁场、Biermann自生磁场、不同外加磁场情况下的演化. 模拟结果表明, Biermann自生磁场和平行流向的外加磁场在RTI演化过程中基本不会改变RTI的界面动力学, 而垂直流向的外加磁场对RTI以及RTI尖钉尾部的Kelvin-Helmholtz涡旋有致稳作用, 其中磁压力起主导作用. 研究结果为后续开展和ICF相关的靶物理研究提供借鉴, 也有助于加深对流体混合过程的理解.
    Rayleigh-Taylor instability (RTI) is a fundamental physical phenomenon in fluids and plasmas, and plays a significant role in astrophysics, space physics, and engineering. Especially in inertial confinement fusion (ICF) research, numerous experimental and simulation results have identified RTI as one of the most significant barriers to achieving fusion. Understanding the origin and development of RTI will be conducive to formulating mitigation measures to curb the growth of instability, thereby improving the odds of ICF success. Although there have existed many theoretical and experimental studies of RTI under high energy density, there are few experiments to systematically explore the influence of magnetic fields on the evolution of magnetized RTI. Here, a new experimental scheme is proposed based on the Shenguang-II laser facility on which the nanosecond laser beams are used to drive modulation targets of polystyrene (CH) and low-density foam layers. A shock wave is generated after the laser’s CH modulation layer has been ablated, and propagates through CH to low-density foam. Moreover, Richtmyer-Meshkov instability is triggered off when the shock wave accelerates the target. When the laser pulse ends, the shock wave evolves into a blast wave, causing the system to decelerate, resulting in RTI in the reference system of the interface. In this paper the open-source radiation MHD simulation code (FLASH) is used to simulate the RTI generated by a laser-driven modulation target. The evolution of RTI under no magnetic field, under Biermann self-generated magnetic field, and under different applied magnetic fields are systematically investigated and compared with each other. The simulation results show that the Biermann self-generated magnetic field and the applied magnetic field parallel to flow direction do not change the interface dynamics in the evolution process of RTI. Nevertheless, the applied magnetic field perpendicular to flow direction can stabilize RTI and the Kelvin-Helmholtz vortex at the tail of the RTI spike. Magnetic pressure plays a decisive role. The present results provide a reference for the follow-up study of target physics related to ICF and deepen the understanding of the fluid mixing process.
      通信作者: 仲佳勇, jyzhong@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175018, 12135001, U1930108, 12075030, 11903006, 12005305)、中国科学院战略性先导研究计划(批准号: XDA25030700)和中国科学院重点资助项目(批准号: QYZDJ-SSW-SLH050)资助的课题
      Corresponding author: Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175018, 12135001, U1930108, 12075030, 11903006, 12005305), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25030700), and the Key Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH050)
    [1]

    Rayleigh L 1882 Proc. R. Math. Soc. s1–14 170Google Scholar

    [2]

    Taylor G I 1950 Proc. R. Soc. London, Ser. A 201 192Google Scholar

    [3]

    Zhou Y, Williams R, Ramaprabhu P, Groom M, Attal N 2021 Physica D 423 132838Google Scholar

    [4]

    刘昕悦, 李伟民, 刘永江, 戴黎明, 董昊, 李婧, 赵英利 2019 岩石学报 35 1071Google Scholar

    Liu X Y, Li W M, Liu YJ, Dai L M, Dong H, Li J, Zhao Y L 2019 Acta Petrologica Sin. 35 1071Google Scholar

    [5]

    Uchiyama Y, Aharonian F, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576Google Scholar

    [6]

    Sano T, Tamatani S, Matsuo K, Law K F F, Morita T, Egashira S, Ota M, Kumar R, Shimogawara H, Hara Y 2021 Phys. Rev. E 104 035206Google Scholar

    [7]

    Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N 2016 Phys. Plasmas 23 032126Google Scholar

    [8]

    Nymark T K, Fransson C, Kozma C 2006 Astron. Astrophys. 449 171Google Scholar

    [9]

    Ma X, Delamere P A, Otto A 2016 J. Geophys. Res. 121 5260Google Scholar

    [10]

    Matsumoto Y, Hoshino M 2004 Geophys. Res. Lett. 31 1Google Scholar

    [11]

    Wang L F, Ye W H, Chen Z, Li Y S, Ding Y K, Zhao K G, Zhang J, Li Z Y, Yang Y P, Wu J F, et al. 2021 High Power Laser and Particle Beams 33 012001Google Scholar

    [12]

    Hammel B A, Haan S W, Clark D S, Edwards M J, Langer S H, Marinak M M, Patel M V, Salmonson J D, Scott H A 2010 High Energy Density Phys. 6 171Google Scholar

    [13]

    Clark D S, Haan S W, Cook A W, Edwards M J, Hammel B A, Koning J M, Marinak M M 2011 Phys. Plasmas 18 082701Google Scholar

    [14]

    Zhou Y 2017 Phys. Rep. 723–725 1Google Scholar

    [15]

    Vandenboomgaerde M, Bonnefille M, Gauthier P 2016 Phys. Plasmas 23 020501Google Scholar

    [16]

    Capelli D, Schmidt D W, Cardenas T Rivera G, Randolph R B, Fierro F, Merritt E C, Flippo K A, Doss F W, Kline J L 2016 Fusion Sci. Technol. 70 316Google Scholar

    [17]

    孙伟, 安维明, 仲佳勇 2020 69 244701Google Scholar

    Sun W, An W M, Zhong J Y 2020 Acta Phys. Sin. 69 244701Google Scholar

    [18]

    Remington B A, Park H S, Casey D T, Cavalloa R M, Clarka D S, Huntingtona C M, Kuranzb C C, Milesa A R, Nagela S R, Ramana K S, Smalyuk V A 2019 Proc. Natl. Acad. Sci. U.S.A. 116 18233Google Scholar

    [19]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press) pp481–512

    [20]

    Sun Y B, Wang C 2020 Phys. Rev. E 101 053110Google Scholar

    [21]

    赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土 2018 67 094701Google Scholar

    Zhao K G, Xue C, Wang L F, Ye W H, Wu J F, Ding Y K, Zhang W Y, He X T 2018 Acta Phys. Sin. 67 094701Google Scholar

    [22]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305Google Scholar

    [23]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708Google Scholar

    [24]

    Reckinger S J, Livescu D, Vasilyev O V 2016 J. Comput. Phys. 313 181Google Scholar

    [25]

    Wieland S, Reckinger S, Hamlington P E, Livescu D 2017 47th AIAA Fluid Dynamics Conference Denver, Colorado, USA, June 5–9, 2017 p3974

    [26]

    李源, 罗喜胜 2014 63 085203Google Scholar

    Li Y, Luo X S 2014 Acta Phys. Sin. 63 085203Google Scholar

    [27]

    Rigon G, Casner A, Albertazzi B, Michel Th, Mabey P, Falize E, Ballet J, Van Box Som L, Pikuz S, Sakawa Y, Sano T, Faenov A, Pikuz T, Ozaki N, Kuramitsu Y, Valdivia M P, Tzeferacos P, Lamb D, Koenig M 2019 Phys. Rev. E 100 021201Google Scholar

    [28]

    Sauppe J P, Palaniyappan S, Tobias B J, Kline J L, Flippo K A, Landen O L, Shvarts D, Batha S H, Bradley P A, Loomis E N, Vazirani N N, Kawaguchi C F, Kot L, Schmidt D W, Day T H, Zylstra A B, Malka E 2020 Phys. Rev. Lett. 124 185003Google Scholar

    [29]

    Gao L, Nilson P M, Igumenschev I V, Fiksel G, Yan R, Davies J R, Martinez D, Smalyuk V, Haines M G, Blackman E G, Froula D H, Betti R, Meyerhofer D D 2013 Phys. Rev. Lett. 110 185003Google Scholar

    [30]

    Khiar B, Revet G, Ciardi A, Burdonov K, Filippov E, Béard J, Cerchez M, Chen S N, Gangolf T, Makarov S S, Ouillé M, Safronova M, Skobelev I Y, Soloviev A, Starodubtsev M, Willi O, Pikuz S, Fuchs J 2019 Phys. Rev. Lett. 12320 205001Google Scholar

    [31]

    Sun Y B, Gou J N, Wang C 2021 Phys. Plasmas 28 092707Google Scholar

    [32]

    Barbeau Z, Raman K, Manuel M, Nagel S, Shivamoggi B 2022 Phys. Plasmas 29 012306Google Scholar

    [33]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, Macneice P, Rosner R, Truran J W, Tufo H M 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [34]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Controlled Fusion 62 095020Google Scholar

    [35]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [36]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 205001Google Scholar

    [37]

    Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extrem. 6 026904Google Scholar

    [38]

    Shivamoggi B K 1982 Z. Angew. Math. Phys. 33 693Google Scholar

  • 图 1  实验方案初始设置图

    Fig. 1.  Experimental scheme initial setup.

    图 2  无磁场情况下, 不同时刻电子密度分布图 (a) $2.5 \; \rm{ns}$时刻; (b) $5 \; \rm{ns}$时刻; (c) $7.5 \; \rm{ns}$时刻; (d) $10 \; \rm{ns}$时刻

    Fig. 2.  In the absence of a magnetic field, the electron density distribution at different times: (a) $2.5 \; \rm{ns}$; (b) $5 \; \rm{ns}$; (c) $7.5 \; \rm{ns}$; (d) $10 \; \rm{ns}$

    图 3  $10 \; \rm{ns}$时刻的电子密度分布图 (a)无磁场情况; (b)考虑Biermann自生磁场情况; (c)考虑Biermann自生磁场、平面靶情况

    Fig. 3.  Snapshots of the electron density distribution at the time of $10 \; \rm{ns}$: (a) Without magnetic field; (b) considering Biermann self-generated magnetic field; (c) Biermann self-generated magnetic field and plane target

    图 4  不同初始外加磁场条件下, 10 ns时刻的电子密度分布图 (a) x方向外加$10^{4} \; \rm{G}$磁场; (b) x方向外加$10^{5} \; \rm{G}$磁场; (c) y方向外加$10^{5} \; \rm{G}$磁场; (d)激光能量降为原来的10%时, x方向外加$10^{5} \; \rm{G}$磁场情况

    Fig. 4.  Snapshots of electron density distribution at $10 \; \rm{ns}$ under different initial applied magnetic field conditions: (a) With $10^{4} \; \rm{G}$ in the x-direction; (b) with $10^{5} \ \rm{G}$ in the x-direction; (c) with $10^{5} \; \rm{G}$ in the y-direction; (d) when the laser energy is reduced to 10%, with $10^{5} \; \rm{G}$ in the x-direction

    图 5  不同初始条件下, (a) RTI的MZ高度和(b)界面高度P随时间的发展情况

    Fig. 5.  Development of (a) the RTI MZ height and (b) the RTI interface height with time under different initial conditions

    图 6  不同初始条件下, (a) RTI尖钉高度和(b) RTI气泡高度随时间的变化情况

    Fig. 6.  Changes of (a) RTI spike height and (b) RTI bubble height with time under different initial conditions

    图 7  不同初始条件下, (a)外围冲击波界面高度和(b) KHI涡旋高度H随时间的发展情况

    Fig. 7.  Development of (a) the peripheral shock wave interface height and (b) KHI vortex height H with time under different initial conditions

    图 8  有无磁场时, $10 \ \mathrm{ns}$时刻RTI演化区域涡度分布情况 (a)无磁场; (b)在x方向施加$10^{5} \; \rm{G}$磁场; (c)当相应激光的入射能量降低到10%时, 在x方向外加$10^{5} \; \rm{G}$磁场

    Fig. 8.  Vorticity distribution in the RTI evolution region at $10 \; \rm{ns}$ with or without magnetic field: (a) Without the magnetic field; (b) a $10^{5} \; \rm{G}$ magnetic field is applied in the x-direction; (c) when the incident energy of the corresponding laser is reduced to 10%, a $10^{5} \ \rm{G}$ is applied in the x-direction

    图 9  x方向初始外加$10^{5} \; \rm{G}$磁场时, 不同激光条件、不同时刻磁场强度分布图 (a), (b)分别对应入射激光能量为$1000 \ \mathrm{J}$时, $5$$10 \; \rm{ns}$时刻磁场强度分布图; (c), (d)分别对应入射激光$100 \ \mathrm{J}$$5 $$10 \; \rm{ns}$时刻磁场强度分布图

    Fig. 9.  Magnetic field intensity distribution at different times under different laser conditions, when $10^{5} \; \rm{G}$ is initially applied in x-direction: (a), (b) The magnetic field intensity distribution at $5 $ and $10 \; \rm{ns}$ corresponding to incident laser $1000 \ \mathrm{J}$, respectively; (c), (d) the magnetic field intensity distribution at $5$ and $10 \; \rm{ns}$ corresponding to incident laser $100 \; \rm{J}$, respectively

    图 10  x方向初始外加$10^{5} \; \rm{G}$磁场时, 不同激光条件下, $10 \ \mathrm{ns}$时刻磁压力与磁张力分布图 (a), (b)分别对应入射激光能量为$1000$$100 \ \mathrm{J}$时磁压力分布情况; (c), (d)分别对应入射激光能量为$1000$$100 \; \rm{J}$时磁张力分布情况

    Fig. 10.  Distribution of magnetic pressure and magnetic tension at $10 \; \rm{ns}$ under different laser conditions when $10^{5} \; \rm{G}$ is initially applied in x-direction: (a), (b) The magnetic pressure distribution corresponding to the incident laser energy of $1000 $ and $100 \ \mathrm{J}$ respectively; (c), (d) the magnetic tension distribution corresponding to the incident laser energy of $1000$ and $100 \; \rm{J}$ respectively

    图 11  x方向初始外加$10^{5} \; \rm{G}$磁场时, 不同激光条件下, $10 \ \mathrm{ns}$时刻负压力梯度力分布 (a)入射激光能量为$1000 \ \mathrm{J}$; (b)入射激光能量为$100 \ \mathrm{J}$

    Fig. 11.  When a $10^{5} \; \rm{G}$ is initially applied in the x-direction, the negative pressure gradient force distribution at $10 \ \mathrm{ns}$ under different laser conditions: (a) when the incident laser energy is $1000 \ \mathrm{J}$; (b) when the incident laser energy is $100 \; \rm{J}$

    表 1  不同初始条件下模拟参数比较.

    Table 1.  Comparison of simulation parameters under different initial conditions.

    算例 靶型 外加磁场/G Biermann
    自生磁场
    激光能量/J
    1 调制靶 0 忽略 1000
    2 调制靶 0 考虑 1000
    3 平面靶 0 考虑 1000
    4 调制靶 $10^{4}$ (x方向) 忽略 1000
    5 调制靶 $10^{5} $ (x方向) 忽略 1000
    6 调制靶 $ 10^{5} $ (y方向) 忽略 1000
    7 调制靶 $ 10^{5} $ (x方向) 忽略 100
    下载: 导出CSV
    Baidu
  • [1]

    Rayleigh L 1882 Proc. R. Math. Soc. s1–14 170Google Scholar

    [2]

    Taylor G I 1950 Proc. R. Soc. London, Ser. A 201 192Google Scholar

    [3]

    Zhou Y, Williams R, Ramaprabhu P, Groom M, Attal N 2021 Physica D 423 132838Google Scholar

    [4]

    刘昕悦, 李伟民, 刘永江, 戴黎明, 董昊, 李婧, 赵英利 2019 岩石学报 35 1071Google Scholar

    Liu X Y, Li W M, Liu YJ, Dai L M, Dong H, Li J, Zhao Y L 2019 Acta Petrologica Sin. 35 1071Google Scholar

    [5]

    Uchiyama Y, Aharonian F, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576Google Scholar

    [6]

    Sano T, Tamatani S, Matsuo K, Law K F F, Morita T, Egashira S, Ota M, Kumar R, Shimogawara H, Hara Y 2021 Phys. Rev. E 104 035206Google Scholar

    [7]

    Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N 2016 Phys. Plasmas 23 032126Google Scholar

    [8]

    Nymark T K, Fransson C, Kozma C 2006 Astron. Astrophys. 449 171Google Scholar

    [9]

    Ma X, Delamere P A, Otto A 2016 J. Geophys. Res. 121 5260Google Scholar

    [10]

    Matsumoto Y, Hoshino M 2004 Geophys. Res. Lett. 31 1Google Scholar

    [11]

    Wang L F, Ye W H, Chen Z, Li Y S, Ding Y K, Zhao K G, Zhang J, Li Z Y, Yang Y P, Wu J F, et al. 2021 High Power Laser and Particle Beams 33 012001Google Scholar

    [12]

    Hammel B A, Haan S W, Clark D S, Edwards M J, Langer S H, Marinak M M, Patel M V, Salmonson J D, Scott H A 2010 High Energy Density Phys. 6 171Google Scholar

    [13]

    Clark D S, Haan S W, Cook A W, Edwards M J, Hammel B A, Koning J M, Marinak M M 2011 Phys. Plasmas 18 082701Google Scholar

    [14]

    Zhou Y 2017 Phys. Rep. 723–725 1Google Scholar

    [15]

    Vandenboomgaerde M, Bonnefille M, Gauthier P 2016 Phys. Plasmas 23 020501Google Scholar

    [16]

    Capelli D, Schmidt D W, Cardenas T Rivera G, Randolph R B, Fierro F, Merritt E C, Flippo K A, Doss F W, Kline J L 2016 Fusion Sci. Technol. 70 316Google Scholar

    [17]

    孙伟, 安维明, 仲佳勇 2020 69 244701Google Scholar

    Sun W, An W M, Zhong J Y 2020 Acta Phys. Sin. 69 244701Google Scholar

    [18]

    Remington B A, Park H S, Casey D T, Cavalloa R M, Clarka D S, Huntingtona C M, Kuranzb C C, Milesa A R, Nagela S R, Ramana K S, Smalyuk V A 2019 Proc. Natl. Acad. Sci. U.S.A. 116 18233Google Scholar

    [19]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press) pp481–512

    [20]

    Sun Y B, Wang C 2020 Phys. Rev. E 101 053110Google Scholar

    [21]

    赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土 2018 67 094701Google Scholar

    Zhao K G, Xue C, Wang L F, Ye W H, Wu J F, Ding Y K, Zhang W Y, He X T 2018 Acta Phys. Sin. 67 094701Google Scholar

    [22]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305Google Scholar

    [23]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708Google Scholar

    [24]

    Reckinger S J, Livescu D, Vasilyev O V 2016 J. Comput. Phys. 313 181Google Scholar

    [25]

    Wieland S, Reckinger S, Hamlington P E, Livescu D 2017 47th AIAA Fluid Dynamics Conference Denver, Colorado, USA, June 5–9, 2017 p3974

    [26]

    李源, 罗喜胜 2014 63 085203Google Scholar

    Li Y, Luo X S 2014 Acta Phys. Sin. 63 085203Google Scholar

    [27]

    Rigon G, Casner A, Albertazzi B, Michel Th, Mabey P, Falize E, Ballet J, Van Box Som L, Pikuz S, Sakawa Y, Sano T, Faenov A, Pikuz T, Ozaki N, Kuramitsu Y, Valdivia M P, Tzeferacos P, Lamb D, Koenig M 2019 Phys. Rev. E 100 021201Google Scholar

    [28]

    Sauppe J P, Palaniyappan S, Tobias B J, Kline J L, Flippo K A, Landen O L, Shvarts D, Batha S H, Bradley P A, Loomis E N, Vazirani N N, Kawaguchi C F, Kot L, Schmidt D W, Day T H, Zylstra A B, Malka E 2020 Phys. Rev. Lett. 124 185003Google Scholar

    [29]

    Gao L, Nilson P M, Igumenschev I V, Fiksel G, Yan R, Davies J R, Martinez D, Smalyuk V, Haines M G, Blackman E G, Froula D H, Betti R, Meyerhofer D D 2013 Phys. Rev. Lett. 110 185003Google Scholar

    [30]

    Khiar B, Revet G, Ciardi A, Burdonov K, Filippov E, Béard J, Cerchez M, Chen S N, Gangolf T, Makarov S S, Ouillé M, Safronova M, Skobelev I Y, Soloviev A, Starodubtsev M, Willi O, Pikuz S, Fuchs J 2019 Phys. Rev. Lett. 12320 205001Google Scholar

    [31]

    Sun Y B, Gou J N, Wang C 2021 Phys. Plasmas 28 092707Google Scholar

    [32]

    Barbeau Z, Raman K, Manuel M, Nagel S, Shivamoggi B 2022 Phys. Plasmas 29 012306Google Scholar

    [33]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, Macneice P, Rosner R, Truran J W, Tufo H M 2000 Astrophys. J. Suppl. Ser. 131 273Google Scholar

    [34]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Controlled Fusion 62 095020Google Scholar

    [35]

    Macfarlane J J 1989 Comput. Phys. Commun. 56 259Google Scholar

    [36]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 205001Google Scholar

    [37]

    Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extrem. 6 026904Google Scholar

    [38]

    Shivamoggi B K 1982 Z. Angew. Math. Phys. 33 693Google Scholar

  • [1] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟.  , 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [2] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响.  , 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响.  , 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究.  , 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [5] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟.  , 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [6] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究.  , 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [7] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究.  , 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [8] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究.  , 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [9] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型.  , 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [10] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟.  , 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [11] 毕海亮, 魏来, 范冬梅, 郑殊, 王正汹. 旋转圆柱等离子体中撕裂模和Kelvin-Helmholtz不稳定性的激发特性.  , 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [12] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响.  , 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [13] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析.  , 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [14] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究.  , 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [15] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响.  , 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [16] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究.  , 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [17] 王立锋, 叶文华, 范征锋, 李英骏. 二维不可压流体Kelvin-Helmholtz不稳定性的弱非线性研究.  , 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [18] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究.  , 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [19] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏. 二维可压缩流体Kelvin-Helmholtz不稳定性.  , 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [20] 王立锋, 叶文华, 李英骏. 二维不可压缩流体Kelvin-Helmholtz不稳定性的二次谐波产生.  , 2008, 57(5): 3038-3043. doi: 10.7498/aps.57.3038
计量
  • 文章访问数:  4225
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-31
  • 上网日期:  2022-07-18
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map