-
When a container filled with water is subjected to vertical vibration, bubbles in the water may sink. This phenomenon exists widely in the field of engineering, and has a non-negligible influence on aerospace engineering and ship engineering. Therefore, it is of great significance to study the movement of bubble sinking in order to reduce the adverse effect caused by bubble sinking in the project. In previous papers, the effect of Basset force on bubble motion was usually ignored. In this paper, the bubble motion model based on the ideal gas equation is built for spherical bubbles, and the influence of the Basset force on the bubble motion is considered in the model. In the process of solving Basset force, the motion is directly separated and the convergence factor is introduced in theoretical solution. The equal step composite trapezoid formula is applied to the numerical solution. The results of numerical calculation show that the added mass force is important for bubble sinking. We find that the Basset force has no effect on the stable oscillation position of bubble, but it can accelerate the later trajectory of bubble motion. Importantly, we demonstrate that the bubble is hindered by the following component forces: buoyancy, viscous resistance, and flow thrust (which are ordered from large to small value). The movement of the bubble is observed to be in the form of oscillation, and there exists a depth, i.e. a critical depth: the bubble oscillate steadily at this depth, specifically, the bubble rises above this depth and sinks below this depth. When the vibration pressure changes, the location of the bubble’s stable oscillation will also be affected. The origin can be ascribed to the change of added mass force caused by the change of vibration pressure. Meanwhile, on the basis of digital image processing method, denoising, filtering, local stretching, image binarization and image filling are used to extract the characteristic dimension of bubbles. The theoretical value of the critical depth of bubble sinking matches the experimental result and their relative error is less than 5%. These new findings enrich the understanding of the moving bubbles in liquid materials used in nuclear reactors, rocket propulsion fuels and chemical experiments.
-
Keywords:
- vertical vibration /
- bubble sinking /
- stable oscillation /
- Basset force
[1] Buchanan R H, Jameson G, Oedjoe D 1962 Ind. Eng. Chem. Fundam. 1 82Google Scholar
[2] Bleich H H 1956 Jet Propul. 26 958Google Scholar
[3] Brennen C E 1982 A Review of Added Mass and Fluid Inertial Forces (Port Hueneme: Naval Civil Engineering Laboratory) pp2−6
[4] Sorokin V S, Blekhman I I, Vasilkov V B 2012 Nonlinear Dyn. 67 147Google Scholar
[5] Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 5669Google Scholar
[6] Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 7548Google Scholar
[7] Baird M H I 1963 Can. J. Chem. Eng. 41 52Google Scholar
[8] Blekhman I I, Blekhman L I, Vaisberg L A, Vasil’Kov V B, Yakimova K S 2008 Dokl. Phys. 53 520Google Scholar
[9] Crum L A, Eller A I 1970 J. Acoust. Soc. Am. 48 181Google Scholar
[10] Sorokin V S, Blekhman I I, Blekhman L I, Vasilkov V B, Yakimova K S 2011 The 10 th International Conference on Vibration Problems Prague, Czech Republic, September 5–8, 2011 pp127−132
[11] Blekhman I I, Blekhman L I, Sorokin V S, Vaisberg L A, Vasilkov V B, Yakimova K S 2013 Procedia IUTAM 8 43Google Scholar
[12] Sorokin V, Blekhman I I, Thomsen J J 2010 Nonlinear Dyn. 60 639Google Scholar
[13] Houghton G 1963 Proc. R. Soc. Lond. A 272 33Google Scholar
[14] 李双 2018 硕士学位论文 (杭州: 浙江大学)
Li S 2018 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[15] Zoueshtiagh F, Caps H, Legendre M, Vandewalle N, Petitjeans P, Kurowski P 2006 Eur. Phys. J. E 20 317Google Scholar
[16] 田恒斗, 金良安, 迟卫, 房毅, 韩云东, 王涌 2011 力学学报 43 680Google Scholar
Tian H D, Jin L A, Chi W, Fang Y, Han Y D, Wang Y 2011 Chin. J. Theor. Appl. Mech. 43 680Google Scholar
[17] 黄社华, 程良骏 1996 水利学报 54Google Scholar
Huang S H, Cheng L J 1996 J. Hydraul. Eng. 54Google Scholar
[18] 李帅, 孙龙泉, 张阿漫 2014 63 184701Google Scholar
Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar
[19] 田恒斗, 金良安, 丁兆红, 谢田华 2010 化工学报 61 15Google Scholar
Tian H D, Jin L A, Ding Z H, Xie T H 2010 CIESC J. 61 15Google Scholar
[20] 马艳, 林书玉, 徐洁 2018 67 034301Google Scholar
Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar
[21] 沈壮志, 林书玉 2011 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
[22] 张鹏利, 林书玉, 朱华泽, 张涛 2019 68 134301Google Scholar
Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar
[23] Tadaki T, Maeda S 1961 Chem. Eng. 25 254Google Scholar
[24] 刘柳 2013 硕士学位论文 (长沙: 中南大学)
Liu L 2013 M. S. Thesis (Changsha: Central South University) (in Chinese)
[25] Zawala J 2016 Phys Fluids. 28 057103Google Scholar
[26] 王红一 2011 博士学位论文 (天津: 天津大学)
Wang H Y 2011 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[27] Flanders H 1982 Am. Math. Mon. 89 264Google Scholar
[28] 曲伟杰 2009 硕士学位论文 (天津: 天津大学)
Qu W J 2009 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)
[29] Mi kaelian D, Larcy A, Dehaeck S, Haut B 2013 Chem. Eng. Sci. 100 529Google Scholar
[30] Keshavarzi G, Pawell R S, Barber T J, Yeoh G H 2014 Chem. Eng. Sci. 112 25Google Scholar
[31] 汤华鹏, 温济铭, 谷海峰 2019 应用科技 46 108Google Scholar
Tang H P, Wen J M, Gu H F 2019 Appl. Sci. Technol. 46 108Google Scholar
-
图 6 气泡图像处理 (a)背景图像; (b)带有气泡的图像; (c)差影法处理; (d)截取带有气泡的局部图像; (e)去噪; (f)
$3 \times 3$ 滤波; (g)局部拉伸; (h)二值化处理; (i)填充图像Figure 6. Bubble image processing: (a) Background image; (b) image with bubbles; (c) subtraction processing; (d) local image with bubbles; (e) denoising; (f)
$3 \times 3$ filtering; (g) local stretching; (h) image binarization; (i) image filling. -
[1] Buchanan R H, Jameson G, Oedjoe D 1962 Ind. Eng. Chem. Fundam. 1 82Google Scholar
[2] Bleich H H 1956 Jet Propul. 26 958Google Scholar
[3] Brennen C E 1982 A Review of Added Mass and Fluid Inertial Forces (Port Hueneme: Naval Civil Engineering Laboratory) pp2−6
[4] Sorokin V S, Blekhman I I, Vasilkov V B 2012 Nonlinear Dyn. 67 147Google Scholar
[5] Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 5669Google Scholar
[6] Ellenberger J, Krishna R 2007 Chem. Eng. Sci. 62 7548Google Scholar
[7] Baird M H I 1963 Can. J. Chem. Eng. 41 52Google Scholar
[8] Blekhman I I, Blekhman L I, Vaisberg L A, Vasil’Kov V B, Yakimova K S 2008 Dokl. Phys. 53 520Google Scholar
[9] Crum L A, Eller A I 1970 J. Acoust. Soc. Am. 48 181Google Scholar
[10] Sorokin V S, Blekhman I I, Blekhman L I, Vasilkov V B, Yakimova K S 2011 The 10 th International Conference on Vibration Problems Prague, Czech Republic, September 5–8, 2011 pp127−132
[11] Blekhman I I, Blekhman L I, Sorokin V S, Vaisberg L A, Vasilkov V B, Yakimova K S 2013 Procedia IUTAM 8 43Google Scholar
[12] Sorokin V, Blekhman I I, Thomsen J J 2010 Nonlinear Dyn. 60 639Google Scholar
[13] Houghton G 1963 Proc. R. Soc. Lond. A 272 33Google Scholar
[14] 李双 2018 硕士学位论文 (杭州: 浙江大学)
Li S 2018 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)
[15] Zoueshtiagh F, Caps H, Legendre M, Vandewalle N, Petitjeans P, Kurowski P 2006 Eur. Phys. J. E 20 317Google Scholar
[16] 田恒斗, 金良安, 迟卫, 房毅, 韩云东, 王涌 2011 力学学报 43 680Google Scholar
Tian H D, Jin L A, Chi W, Fang Y, Han Y D, Wang Y 2011 Chin. J. Theor. Appl. Mech. 43 680Google Scholar
[17] 黄社华, 程良骏 1996 水利学报 54Google Scholar
Huang S H, Cheng L J 1996 J. Hydraul. Eng. 54Google Scholar
[18] 李帅, 孙龙泉, 张阿漫 2014 63 184701Google Scholar
Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701Google Scholar
[19] 田恒斗, 金良安, 丁兆红, 谢田华 2010 化工学报 61 15Google Scholar
Tian H D, Jin L A, Ding Z H, Xie T H 2010 CIESC J. 61 15Google Scholar
[20] 马艳, 林书玉, 徐洁 2018 67 034301Google Scholar
Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar
[21] 沈壮志, 林书玉 2011 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
[22] 张鹏利, 林书玉, 朱华泽, 张涛 2019 68 134301Google Scholar
Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar
[23] Tadaki T, Maeda S 1961 Chem. Eng. 25 254Google Scholar
[24] 刘柳 2013 硕士学位论文 (长沙: 中南大学)
Liu L 2013 M. S. Thesis (Changsha: Central South University) (in Chinese)
[25] Zawala J 2016 Phys Fluids. 28 057103Google Scholar
[26] 王红一 2011 博士学位论文 (天津: 天津大学)
Wang H Y 2011 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[27] Flanders H 1982 Am. Math. Mon. 89 264Google Scholar
[28] 曲伟杰 2009 硕士学位论文 (天津: 天津大学)
Qu W J 2009 M. S. Thesis (Tianjin: Tianjin University) (in Chinese)
[29] Mi kaelian D, Larcy A, Dehaeck S, Haut B 2013 Chem. Eng. Sci. 100 529Google Scholar
[30] Keshavarzi G, Pawell R S, Barber T J, Yeoh G H 2014 Chem. Eng. Sci. 112 25Google Scholar
[31] 汤华鹏, 温济铭, 谷海峰 2019 应用科技 46 108Google Scholar
Tang H P, Wen J M, Gu H F 2019 Appl. Sci. Technol. 46 108Google Scholar
Catalog
Metrics
- Abstract views: 6274
- PDF Downloads: 149
- Cited By: 0