搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

法拉第旋转对空间被动微波遥感的影响及消除

严卫 陆文 施健康 任建奇 王蕊

引用本文:
Citation:

法拉第旋转对空间被动微波遥感的影响及消除

严卫, 陆文, 施健康, 任建奇, 王蕊

Eliminating the influence of Faraday rotation on passive microwave remote sensing from space

Yan Wei, Lu Wen, Shi Jian-Kang, Ren Jian-Qi, Wang Rui
PDF
导出引用
  • 法拉第旋转是空间被动微波遥感重要的误差来源之一.本文研究了法拉第旋转变化的机理;分析了法拉第旋转对微波辐射计观测精度的影响;着重就1.4 GHz 正交极化通道亮温Tv以及10.7 GHz 相关极化通道亮温U的法拉第旋转校正展开讨论.通过仿真2006年海南某观测站点全年的星载微波辐射计观测数据并利用蒙特卡罗法模拟噪声的影响,分析比较了使用辅助数据(IRI 模型法)和极化模式(Yueh方法和Ribó方法)两种途径对法拉第旋转的校正效果,进而提出了一种应用IGS
    Faraday rotation (FR) is one of the important error sources for passive microwave remote sensing from space. In this paper, the principle of FR variation is studied. The influence of FR on accuracy for microwave radiometer measurement is analyzed. We concentrate on FR correction both at 1.4 GHz for the orthogonal channel brightness temperature Tv and at 10.7 GHz for the correlative channel brightness temperature U. By using the simulated observational data of spaceborne microwave radiometry at one point in Hainan province in 2006, we compare the effects of two approaches: correction by auxiliary data (IRI model correction) and correction by polarimetric mode (Yueh and Ribó methods). Noise generated by the Monte Carlo mode is included in the simulation. Then a new method of using TEC data released by international GNSS service (IGS) is proposed. For correction of Tv at 1.4 GHz, correction made by polarimetric mode is better than that by auxiliary data. Yueh method is best in effectiveness while IRI model method is worst. For the correction of U at 10.7 GHz, the correction by polarimetric mode is invalid, only correction by auxiliary data is valid. IGS data method greatly improves the correction accuracy and can replace the method of IRI model for nearly real time correction or final data correction.
    • 基金项目: 国家自然科学基金(批准号:41076118)和国家973项目(批准号:2007CB411805)资助的课题.
    [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive, vol. 1 (Massachusetts: Addison-Wesley Publishing Company)pp229―285

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201―227

    [3]

    Li Z, Wei E B, Tian J W 2007 Acta Phys. Sin. 56 3028 (in Chinese) [李志、魏恩泊、田纪伟 2007 56 3028]

    [4]

    Barré H M J P, Duesmann B, Kerr Y H 2008 IEEE Trans Geosci Remote Sensing 46 587

    [5]

    Vine D M L, Lagerloef G S E, Torrusio S E 2010 Proceedings of the IEEE 98 688

    [6]

    Gaiser P W, Twarog E M, Li L 2004 IGARSS 2004 (New York: IEEE) pp371―374

    [7]

    Shi J K 2009 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [施健康 2009硕士学位论文 (南京:解放军理工大学气象学院)]

    [8]

    Vine D M L, Abraham S 2002 IEEE Trans Geosci Remote Sensing 40 771

    [9]

    Abraham S, Vine D M L 2004 Adv Space Res. 34 2059

    [10]

    Abraham S, Vine D M L 2001 Adv Space Res. 27 153

    [11]

    Yueh S H 2000 IEEE Trans Geosci Remote Sensing 38 2434

    [12]

    Ribó S, Martín-Neira M 2004 IEEE Trans Geosci Remote Sensing 42 1405

    [13]

    Stokes G G 1852 Trans Cambridge Phil Soc. 9 399

    [14]

    Liu Y, Wei E B, Hong J L, Ge Y 2006 Chin. Phys. 15 2175

    [15]

    Vine D M L, Abraham S 2000 Microwave radiometry and remote sensing of the Earth's surface and atmosphere (Zeist: VSP) pp89―96

    [16]

    Shi J K, Yan W, Gong H Y 2009 J Microwave 25 79 (in Chinese) [施健康、严 卫、 龚洪运 2009 微波学报25 79]

    [17]

    Font J, Camps A, Borges A 2010 Proceedings of the IEEE 98 649

    [18]

    Vine D M L, Lagerloef G S E, Colomb F R 2007 IEEE Trans Geosci Remote Sensing 45 2040

    [19]

    Gaiser P W, Germain K M S, Twarog E M 2004 IEEE Trans Geosci Remote Sensing 42 2347

    [20]

    Meissner T, Wentz F J 2006 IEEE Trans Geosci Remote Sensing 44 506

    [21]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs), volume 17 (Lexington: AER) pp1—132

    [22]

    Skou N 2003 Radio Science 38 24

    [23]

    Zine S, Boutin J, Font J 2008 IEEE Trans Geosci Remote Sensing 46 621

    [24]

    Pinori S, Crapolicchio R, Mecklenburg S 2008 MICRORAD 2008 (New York: IEEE) pp97―100

    [25]

    Yueh S H 1997 IEEE Trans Geosci Remote Sensing 35 1400

    [26]

    Rosenkranz P W 1998 Radio Science 33 919

    [27]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005博士学位论文 (北京:中国科学院空间科学与应用研究中心)]

    [28]

    Xu X S, Hong Z J, Guo P, Liu R J 2010 Acta Phys. Sin. 59 2163 (in Chinese) [徐贤胜、洪振杰、郭 鹏、刘荣建 2010 59 2163]

    [29]

    Yan W, Shi J K, Lu W 2010 J Infrared Millim Waves 29 225 (in Chinese) [严 卫、 施健康、陆 文 2010 红外与毫米波学报29 225]

  • [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive, vol. 1 (Massachusetts: Addison-Wesley Publishing Company)pp229―285

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201―227

    [3]

    Li Z, Wei E B, Tian J W 2007 Acta Phys. Sin. 56 3028 (in Chinese) [李志、魏恩泊、田纪伟 2007 56 3028]

    [4]

    Barré H M J P, Duesmann B, Kerr Y H 2008 IEEE Trans Geosci Remote Sensing 46 587

    [5]

    Vine D M L, Lagerloef G S E, Torrusio S E 2010 Proceedings of the IEEE 98 688

    [6]

    Gaiser P W, Twarog E M, Li L 2004 IGARSS 2004 (New York: IEEE) pp371―374

    [7]

    Shi J K 2009 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [施健康 2009硕士学位论文 (南京:解放军理工大学气象学院)]

    [8]

    Vine D M L, Abraham S 2002 IEEE Trans Geosci Remote Sensing 40 771

    [9]

    Abraham S, Vine D M L 2004 Adv Space Res. 34 2059

    [10]

    Abraham S, Vine D M L 2001 Adv Space Res. 27 153

    [11]

    Yueh S H 2000 IEEE Trans Geosci Remote Sensing 38 2434

    [12]

    Ribó S, Martín-Neira M 2004 IEEE Trans Geosci Remote Sensing 42 1405

    [13]

    Stokes G G 1852 Trans Cambridge Phil Soc. 9 399

    [14]

    Liu Y, Wei E B, Hong J L, Ge Y 2006 Chin. Phys. 15 2175

    [15]

    Vine D M L, Abraham S 2000 Microwave radiometry and remote sensing of the Earth's surface and atmosphere (Zeist: VSP) pp89―96

    [16]

    Shi J K, Yan W, Gong H Y 2009 J Microwave 25 79 (in Chinese) [施健康、严 卫、 龚洪运 2009 微波学报25 79]

    [17]

    Font J, Camps A, Borges A 2010 Proceedings of the IEEE 98 649

    [18]

    Vine D M L, Lagerloef G S E, Colomb F R 2007 IEEE Trans Geosci Remote Sensing 45 2040

    [19]

    Gaiser P W, Germain K M S, Twarog E M 2004 IEEE Trans Geosci Remote Sensing 42 2347

    [20]

    Meissner T, Wentz F J 2006 IEEE Trans Geosci Remote Sensing 44 506

    [21]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs), volume 17 (Lexington: AER) pp1—132

    [22]

    Skou N 2003 Radio Science 38 24

    [23]

    Zine S, Boutin J, Font J 2008 IEEE Trans Geosci Remote Sensing 46 621

    [24]

    Pinori S, Crapolicchio R, Mecklenburg S 2008 MICRORAD 2008 (New York: IEEE) pp97―100

    [25]

    Yueh S H 1997 IEEE Trans Geosci Remote Sensing 35 1400

    [26]

    Rosenkranz P W 1998 Radio Science 33 919

    [27]

    Wang Z Z 2005 Ph. D. Dissertation (Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences) (in Chinese) [王振占 2005博士学位论文 (北京:中国科学院空间科学与应用研究中心)]

    [28]

    Xu X S, Hong Z J, Guo P, Liu R J 2010 Acta Phys. Sin. 59 2163 (in Chinese) [徐贤胜、洪振杰、郭 鹏、刘荣建 2010 59 2163]

    [29]

    Yan W, Shi J K, Lu W 2010 J Infrared Millim Waves 29 225 (in Chinese) [严 卫、 施健康、陆 文 2010 红外与毫米波学报29 225]

  • [1] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究.  , 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [2] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算.  , 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [3] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进.  , 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [4] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析.  , 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [5] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法.  , 2015, 64(7): 079501. doi: 10.7498/aps.64.079501
    [6] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究.  , 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [7] 施健康, 陆文, 严卫, 艾未华. 星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导.  , 2013, 62(7): 078402. doi: 10.7498/aps.62.078402
    [8] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验.  , 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [9] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强.  , 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [10] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除.  , 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [11] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应.  , 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [12] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析.  , 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究.  , 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [15] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响.  , 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [16] 刘江涛, 肖文波, 黄接辉, 于天宝, 邓新华. 反常色散材料光子晶体中光输运的光学控制.  , 2010, 59(3): 1665-1670. doi: 10.7498/aps.59.1665
    [17] 陈晓东, 肖邵军, 顾永建, 林秀敏. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器.  , 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [18] 刘公强, 朱莲根, 卫邦达, 张宁杲. 动态法拉第效应及其损耗机制.  , 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] 王焕元, 贾惟义, 沈建祥. Bi4Ge3O12晶体的磁光法拉第旋转.  , 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
    [20] 黄武汉, 凌君达, 何章祥. Ni-Mg,Mg-Mn和Ni-Zn三种铁氧体在3厘米波段的法拉第旋转及衰耗.  , 1958, 14(6): 431-441. doi: 10.7498/aps.14.431
计量
  • 文章访问数:  9439
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-10
  • 修回日期:  2010-12-20
  • 刊出日期:  2011-09-15

/

返回文章
返回
Baidu
map