-
利用Kadomtsev-Petviashvili (KP)系列约束方法和双线性方法, 构造了空间位移宇称–时间反演(
$\mathcal{PT}$ )对称非局域非线性薛定谔方程的高阶怪波解. 任意$N$ 阶怪波解的解析表达式是通过舒尔多项式表示的. 首先通过分析一阶怪波解的动力学行为, 发现怪波的最大振幅可以大于背景平面三倍的任意高度. 分析了对称非局域非线性薛定谔方程中的空间位移因子$x_0$ 在一阶怪波解中的影响, 结果表明其仅改变怪波中心的位置. 另外,研究了二阶怪波解的动力学行为以及怪波模式, 然后给出了$N$ 阶怪波模式与$N$ 阶怪波解的解析表达式中参数之间的关系, 进一步展示了高阶怪波的不同模式.General higher-order rogue wave solutions to the space-shifted$\mathcal{PT}$ -symmetric nonlocal nonlinear Schrödinger equation are constructed by employing the Kadomtsev-Petviashvili hierarchy reduction method. The analytical expressions for rogue wave solutions of any Nth-order are given through Schur polynomials. We first analyze the dynamics of the first-order rogue waves, and find that the maximum amplitude of the rogue waves can reach any height larger than three times of the constant background amplitude. The effects of the space-shifted factor$x_0$ of the$\mathcal{PT}$ -symmetric nonlocal nonlinear Schrödinger equation in the first-order rogue wave solutions are studied, which only changes the center positions of the rogue waves. The dynamical behaviours and patterns of the second-order rogue waves are also analytically investigated. Then the relationships between Nth-order rogue wave patterns and the parameters in the analytical expressions of the rogue wave solutions are given, and the several different patterns of the higher-order rogue waves are further shown.-
Keywords:
- rogue waves /
- $\mathcal{PT}$-symmetric nonlocal nonlinear Schrödinger equation /
- Kadomtsev-Petviashvili hierarchy reduction method
[1] Ablowitz M J, Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)
[2] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[3] Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243Google Scholar
[4] Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar
[5] Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081Google Scholar
[6] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar
[7] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar
[8] Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar
[9] Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar
[10] Regensburger A, Miri M A, Bersch C, Nager J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar
[11] Yan Z Y, Wen Z C, Konotop V V 2015 Phys. Rev. A 92 023821Google Scholar
[12] Yan Z Y, Wen Z C, Hang C 2015 Phys. Rev. E 92 022913Google Scholar
[13] Yan Z Y 2013 Proc. R. Soc. London, Ser. A 371 20120059Google Scholar
[14] Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar
[15] Lin M, Xu T 2015 Phys. Rev. E 91 033202Google Scholar
[16] Xu T, Lan S, Li M, Zhang G W 2019 Physica D 390 47Google Scholar
[17] Huang X, Ling L M 2016 Eur. Phys. J. Plus 131 148Google Scholar
[18] Wen X Y, Yan Z Y, Yang Y Q 2016 Chaos 26 063123Google Scholar
[19] Rao J G, He J S, Mihalache D, Cheng Y 2021 Z. Angew. Math. Phys. 72 1Google Scholar
[20] Yang B, Yang J K 2019 Lett. Math. Phys. 109 945Google Scholar
[21] Yang B, Yang J K 2020 J. Math. Anal. Appl. 487 124023Google Scholar
[22] Yang B, Chen Y 2018 Chaos 28 053104Google Scholar
[23] Rao J G, Cheng Y, Porsezian K, Mihalache D, He J S 2020 Physica D 401 132180Google Scholar
[24] Rao J G, Zhang Y S, Fokas A S, He J S 2018 Nonlinearity 31 4090Google Scholar
[25] Ablowitz M J, Musslimani Z H 2017 Stud. Appl. Math. 139 7Google Scholar
[26] Lou S Y, Huang L 2017 Sci. Rep. 7 1Google Scholar
[27] Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar
[28] Zhao Q, Jia M, Lou S Y 2019 Commun. Theor. Phys. 71 1149Google Scholar
[29] Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516Google Scholar
[30] Gürses M, Pekcan A 2022 Phys. Lett. A 422 127793Google Scholar
[31] Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar
[32] Wang X, Wei J 2022 Appl. Math. Lett. 130 107998Google Scholar
[33] Wang M M, Chen Y 2022 Nonlinear Dyn. 110 753Google Scholar
[34] Yang J, Song H F, Fang M S, Ma L Y 2022 Nonlinear Dyn. 107 3767Google Scholar
[35] Ren P, Rao J G 2022 Nonlinear Dyn. 108 2461Google Scholar
[36] Wu J 2022 Nonlinear Dyn. 108 4021Google Scholar
[37] Wei B, Liang J 2022 Nonlinear Dyn. 109 2969Google Scholar
[38] Wang X B, Tian S F 2022 Theor. Math. Phys. 212 1193Google Scholar
[39] Guo B L, Ling L L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar
[40] Ohta Y, Yang J K 2012 Proc. R. Soc. London, Ser. A 468 1716Google Scholar
[41] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar
[42] Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar
[43] Ling L M, Guo B L, Zhao L C 2014 Phys. Rev. E 89 041201Google Scholar
[44] Zhao L C, Guo B L, Ling L L 2016 J. Math. Phys. 57 043508Google Scholar
[45] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar
[46] Chen S H, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar
[47] Zhang G Q, Yan Z Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117Google Scholar
[48] Bilman D, Miller P D 2019 Commun. Pure Appl. Math. 72 1722Google Scholar
[49] Bilman D, Ling L M, Miller P D 2020 Duke Math. J. 169 671Google Scholar
[50] Rao J G, Mihalache D, He J S 2022 Appl. Math. Lett. 134 108362Google Scholar
[51] Rao J G, He J S, Malomed B A 2022 J. Math. Phys. 63 1Google Scholar
[52] Rao J G, He J S, Cheng Y 2022 Lett. Math. Phys. 112 75Google Scholar
[53] 郭柏灵, 田立新, 闫振亚, 凌黎明 2015 怪波及其数学理论 (浙江: 浙江科学技术出版社)
Guo B L, Tian L X, Tian Z Y, Ling L M 2015 Rogue Wave and Its Mathematical Theory (Zhejiang: Zhejiang Science and Technology Press)
[54] Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar
[55] Hopkin M 2004 Nature 430 492Google Scholar
[56] Muller P, Garret C, Osborne A 2005 Oceanography 18 66Google Scholar
[57] Perkins S 2006 Science News 170 328Google Scholar
[58] Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Heidelberg: Springer)
[59] Pelinovsky E, Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)
[60] Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 06402
[61] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P 2008 Phys. Rev. Lett. 101 065303Google Scholar
[62] Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen P A E M, Kinoshita T, Monbaliu J, Mori N, Osborne A R, Serio M, Stansberg C T, Tamura H, Trulsen K 2009 Phys. Rev. Lett. 102 114502Google Scholar
[63] Yang B, Yang J K 2021 Physica D 419 132850Google Scholar
[64] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[65] Jimbo M, Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943Google Scholar
[66] Date E, Kashiwara M, Jimbo M, Miwa T 1983 Transformation Groups for Soliton Equations, in Nonlinear Integrable Systems–Classical Theory and Quantum Theory (Singapore: World Scientific)
-
图 1 (a)非局域非线性薛定谔方程(2)的一阶怪波解(13), 参数取值为
$c_1^{ + } = {2}/{5},\; c_1^ - = {2}/{5},\; x_0 = 0$ ; (b)不同参数取值下一阶怪波解沿$ t = 0 $ 的截面图:$c_1^ + = c_1^ - = 0, \; x_0 = $ $ - 10$ (蓝色实线),$c_1^ + = c_1^ - = {1}/{5}, \; x_0 = 0$ (红色短虚线),$c_1^ + = c_1^ - = {2}/{5}, \; x_0 = 10$ (黑色长虚线)Fig. 1. (a) The first-order rogue wave solutions (13) of the nonlocal NLS equation (2) with parameters
$c_1^{ + } = {2}/{5}, $ $ c_1^ - = {2}/{5},\; x_0 = 0$ ; (b) plot of the first-order rogue wave solutions along$ t = 0 $ with parameters$c_1^ + = c_1^ - = 0, $ $ x_0 = - 10$ (Blue solid line),$c_1^ + = c_1^ - = {1}/{5},\; x_0 = 0$ (Red short dotted line),$c_1^ + = c_1^ - = {2}/{5}, \; x_0 = 10$ (Black long dotted line).图 2 (a)二阶怪波解的最大值
$ |u_2(x_0, 0)| $ 随$ c_1^{ + } = c_1^{ - } $ 变化; (b)不同参数取值下一阶怪波解沿$ t = 0 $ 的截面图:$c_1^ + = c_1^ - = $ $ 0, \;x_0 = - 10$ (蓝色实线),$c_1^ + = c_1^ - = {1}/{5},\; x_0 = 0$ (红色短虚线),$c_1^ + = c_1^ - = {1}/{4}, \;x_0 = 10$ (黑色长虚线); (c)二阶怪波解$ |u_2 | $ 的基本模式, 参数$c_1^{ + } = c_1^{ - } = {1}/{10}, \;c_3^{ + } = c_3^{ - } = 0$ ; (d)二阶怪波解$ |u_2 | $ 的三角模式, 参数$c_1^{ + } = c_1^{ - } = {1}/{10},\; c_3^{ + } = - c_3^{ - } = 10$ Fig. 2. (a) Changes in the maximum of the second-order rogue wave
$ |u_2(x_0, 0)| $ along$ c_1^{ + } = c_1^{ - } $ ; (b) pot of the second-order rogue waves along$ t = 0 $ with different parameters:$c_1^ + = c_1^ - = 0, \;x_0 = - 10$ (Blue solid line),$c_1^ + = c_1^ - = {1}/{5},\;x_0 = 0$ (Red short dotted line),$c_1^ + = c_1^ - = {1}/{4},\; x_0 = 10$ (Black long dotted line); (c) fundamental pattern of the second-order rogue wave solution$ |u_2 | $ with parameters$c_1^{ + } = c_1^{ - }= {1}/{10},\; c_3^{ + } = c_3^{ - } = 0$ ; (d) triangle pattern of the second-order rogue wave solution$ |u_2 | $ with parameters$c_1^{ + } = c_1^{ - } = {1}/{10}, \;c_3^{ + } = - c_3^{ - } = 10$ 图 3 从左往右四列依次为3阶至6阶怪波在不同参数下的模式, 所有图形中参数
$c_1^{\pm} = ({1}/{100}){\rm{i}}$ . 第一行: 3阶至6阶怪波的基本模式,$ c_{2 j-1}^{\pm} = 0 $ ; 第二行: 3阶至6阶怪波的三角模式,$ c_{3}^{\pm} = \pm10^{N - 2} $ (从左往右图形中N的值依次为$ 3, 4, 5, 6 $ ), 其他参数均为0; 第三行: 3阶至6阶怪波的圆形模式,$ c_{2 N - 1}^{\pm} = \pm10000 $ (从左往右图形中N的值依次为$ 3, 4, 5, 6 $ ), 其他参数均为0Fig. 3. The four columns from left to right correspond to the patterns of third-order to sixth-order rogue waves with
$c_1^{\pm} = ({1}/{100}){\rm{i}}$ and different parameters: The first row: The fundamental patterns of third-order to sixth-order rogue waves with parameters$ c_{2 j - 1}^{\pm} = 0 $ ; The second row: The triangle patterns of third-order to sixth-order rogue waves with parameters$ c_{3}^{\pm} = \pm10^{N - 2} $ (The value of N in the figures from left to right is$ 3, 4, 5, 6 $ ), and the other parameters are zero; The third row: The circular patterns of third-order to sixth-order rogue waves with parameters$ c_{2 N-1}^{\pm} = \pm10000 $ (The value of N in the figures from left to right is$ 3, 4, 5, 6 $ ), and the other parameters are zero图 4 左列为5阶怪波的双环形模式, 参数取值为
$ c_7^{\pm} = \pm10000 $ , 其他参数为0. 右列为6阶怪波的双环形模式, 参数取值为$ c_9^{\pm} = \pm10000 $ , 其他参数为0Fig. 4. The left column is double ring pattern of the fifth-order rogue wave with parameters
$ c_7^{\pm} = \pm10000 $ and the other parameter being zero. The right column is double ring pattern of the sixth-order rogue wave with parameters$ c_9^{\pm} = \pm10000 $ and the other parameters being zero -
[1] Ablowitz M J, Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)
[2] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[3] Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243Google Scholar
[4] Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar
[5] Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081Google Scholar
[6] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar
[7] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar
[8] Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar
[9] Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar
[10] Regensburger A, Miri M A, Bersch C, Nager J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar
[11] Yan Z Y, Wen Z C, Konotop V V 2015 Phys. Rev. A 92 023821Google Scholar
[12] Yan Z Y, Wen Z C, Hang C 2015 Phys. Rev. E 92 022913Google Scholar
[13] Yan Z Y 2013 Proc. R. Soc. London, Ser. A 371 20120059Google Scholar
[14] Ablowitz M J, Musslimani Z H 2013 Phys. Rev. Lett. 110 064105Google Scholar
[15] Lin M, Xu T 2015 Phys. Rev. E 91 033202Google Scholar
[16] Xu T, Lan S, Li M, Zhang G W 2019 Physica D 390 47Google Scholar
[17] Huang X, Ling L M 2016 Eur. Phys. J. Plus 131 148Google Scholar
[18] Wen X Y, Yan Z Y, Yang Y Q 2016 Chaos 26 063123Google Scholar
[19] Rao J G, He J S, Mihalache D, Cheng Y 2021 Z. Angew. Math. Phys. 72 1Google Scholar
[20] Yang B, Yang J K 2019 Lett. Math. Phys. 109 945Google Scholar
[21] Yang B, Yang J K 2020 J. Math. Anal. Appl. 487 124023Google Scholar
[22] Yang B, Chen Y 2018 Chaos 28 053104Google Scholar
[23] Rao J G, Cheng Y, Porsezian K, Mihalache D, He J S 2020 Physica D 401 132180Google Scholar
[24] Rao J G, Zhang Y S, Fokas A S, He J S 2018 Nonlinearity 31 4090Google Scholar
[25] Ablowitz M J, Musslimani Z H 2017 Stud. Appl. Math. 139 7Google Scholar
[26] Lou S Y, Huang L 2017 Sci. Rep. 7 1Google Scholar
[27] Lou S Y 2018 J. Math. Phys. 59 083507Google Scholar
[28] Zhao Q, Jia M, Lou S Y 2019 Commun. Theor. Phys. 71 1149Google Scholar
[29] Ablowitz M J, Musslimani Z H 2021 Phys. Lett. A 409 127516Google Scholar
[30] Gürses M, Pekcan A 2022 Phys. Lett. A 422 127793Google Scholar
[31] Liu S M, Wang J, Zhang D J 2022 Rep. Math. Phys. 89 199Google Scholar
[32] Wang X, Wei J 2022 Appl. Math. Lett. 130 107998Google Scholar
[33] Wang M M, Chen Y 2022 Nonlinear Dyn. 110 753Google Scholar
[34] Yang J, Song H F, Fang M S, Ma L Y 2022 Nonlinear Dyn. 107 3767Google Scholar
[35] Ren P, Rao J G 2022 Nonlinear Dyn. 108 2461Google Scholar
[36] Wu J 2022 Nonlinear Dyn. 108 4021Google Scholar
[37] Wei B, Liang J 2022 Nonlinear Dyn. 109 2969Google Scholar
[38] Wang X B, Tian S F 2022 Theor. Math. Phys. 212 1193Google Scholar
[39] Guo B L, Ling L L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar
[40] Ohta Y, Yang J K 2012 Proc. R. Soc. London, Ser. A 468 1716Google Scholar
[41] He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar
[42] Akhmediev N, Ankiewicz A, Soto-Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar
[43] Ling L M, Guo B L, Zhao L C 2014 Phys. Rev. E 89 041201Google Scholar
[44] Zhao L C, Guo B L, Ling L L 2016 J. Math. Phys. 57 043508Google Scholar
[45] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, Wabnitz S 2014 Phys. Rev. Lett. 113 034101Google Scholar
[46] Chen S H, Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202Google Scholar
[47] Zhang G Q, Yan Z Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117Google Scholar
[48] Bilman D, Miller P D 2019 Commun. Pure Appl. Math. 72 1722Google Scholar
[49] Bilman D, Ling L M, Miller P D 2020 Duke Math. J. 169 671Google Scholar
[50] Rao J G, Mihalache D, He J S 2022 Appl. Math. Lett. 134 108362Google Scholar
[51] Rao J G, He J S, Malomed B A 2022 J. Math. Phys. 63 1Google Scholar
[52] Rao J G, He J S, Cheng Y 2022 Lett. Math. Phys. 112 75Google Scholar
[53] 郭柏灵, 田立新, 闫振亚, 凌黎明 2015 怪波及其数学理论 (浙江: 浙江科学技术出版社)
Guo B L, Tian L X, Tian Z Y, Ling L M 2015 Rogue Wave and Its Mathematical Theory (Zhejiang: Zhejiang Science and Technology Press)
[54] Peregrine D H 1983 J. Aust. Math. Soc. B 25 16Google Scholar
[55] Hopkin M 2004 Nature 430 492Google Scholar
[56] Muller P, Garret C, Osborne A 2005 Oceanography 18 66Google Scholar
[57] Perkins S 2006 Science News 170 328Google Scholar
[58] Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Heidelberg: Springer)
[59] Pelinovsky E, Kharif C 2008 Extreme Ocean Waves (Berlin: Springer)
[60] Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 06402
[61] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P, McClintock P 2008 Phys. Rev. Lett. 101 065303Google Scholar
[62] Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen P A E M, Kinoshita T, Monbaliu J, Mori N, Osborne A R, Serio M, Stansberg C T, Tamura H, Trulsen K 2009 Phys. Rev. Lett. 102 114502Google Scholar
[63] Yang B, Yang J K 2021 Physica D 419 132850Google Scholar
[64] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[65] Jimbo M, Miwa T 1983 Publ. RIMS Kyoto Univ. 19 943Google Scholar
[66] Date E, Kashiwara M, Jimbo M, Miwa T 1983 Transformation Groups for Soliton Equations, in Nonlinear Integrable Systems–Classical Theory and Quantum Theory (Singapore: World Scientific)
计量
- 文章访问数: 3303
- PDF下载量: 132
- 被引次数: 0