-
Surface-enhanced Raman scattering (SERS) is of great importance in analytical science, the noble-metal such as gold and silver are widely used in SERS research and applications. However, noble-metal based substrates are hampered in practical application. As for comparison, the Non-noble metal especially the semiconductor materials are the emerging SERS research frontier. Non-noble metal (such as C, Ti, Zn, Cu, Mo, W, etc.) nanomaterials based SERS substrate have been widely studied and applied due to their superior stability, selectivity, biocompatibility and low cost comparing to noble metal materials. As the chemical enhancement dominate its total SERS signals, it also provides an ideal platform for the investigation of chemical enhancement mechanism. In this review, we explored the development of non-noble metal SERS substrates, focusing on its enhancement mechanism and SERS performance of different materials as well as the future development direction.
-
Keywords:
- non-noble metal materials /
- surface-enhanced Raman scattering substrate /
- semiconductor /
- Raman spectroscopy
[1] Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163
Google Scholar
[2] Moskovits M 1978 J. Chem. Phys. 69 4159
Google Scholar
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667
Google Scholar
[4] Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51
Google Scholar
[5] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553
Google Scholar
[6] Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792
Google Scholar
[7] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164
Google Scholar
[8] Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878
Google Scholar
[9] Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842
Google Scholar
[10] 赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591
Google Scholar
Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591
Google Scholar
[11] Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231
Google Scholar
[12] Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903
Google Scholar
[13] Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934
Google Scholar
[14] Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452
Google Scholar
[15] Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095
Google Scholar
[16] Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005
Google Scholar
[17] Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322
Google Scholar
[18] Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892
Google Scholar
[19] Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254
Google Scholar
[20] Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542
Google Scholar
[21] Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004
Google Scholar
[22] Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721
Google Scholar
[23] Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294
Google Scholar
[24] Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856
Google Scholar
[25] Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204
Google Scholar
[26] Alessandri I 2013 J. Am. Chem. Soc. 135 5541
Google Scholar
[27] Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886
Google Scholar
[28] Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983
Google Scholar
[29] Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794
Google Scholar
[30] Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281
Google Scholar
[31] Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106
Google Scholar
[32] Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851
Google Scholar
[33] Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477
Google Scholar
[34] Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868
Google Scholar
[35] Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291
Google Scholar
[36] Wang R C, Li C H 2011 Acta Mater. 59 822
Google Scholar
[37] Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274
Google Scholar
[38] Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10
Google Scholar
[39] Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651
Google Scholar
[40] Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784
Google Scholar
[41] Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765
Google Scholar
[42] Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276
Google Scholar
[43] Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683
Google Scholar
[44] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993
Google Scholar
[45] Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800
Google Scholar
[46] Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133
Google Scholar
[47] Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091
Google Scholar
[48] Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282
Google Scholar
[49] Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611
Google Scholar
[50] Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518
Google Scholar
[51] 侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139
Google Scholar
Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139
Google Scholar
[52] Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855
Google Scholar
[53] Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079
Google Scholar
[54] Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318
Google Scholar
[55] Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970
Google Scholar
[56] Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707
Google Scholar
[57] Quagliano L G 2004 J. Am. Chem. Soc. 126 7393
Google Scholar
[58] Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460
Google Scholar
-
图 1 (a) 不同pH下, 4-MBA分子在TiO2基底上的SERS光谱[21]; (b) 4-MBA分子在不同Zn掺杂程度TiO2基底上的SERS光谱[22]; (c) 4-MBA分子在不同体系中的能级图[24]; (d) TiO2球形谐振器(T-rex)的制备流程和T-rex 100样品的SEM图像[26]
Figure 1. (a) SERS spectra of 4-MBA adsorbed on TiO2 nanoparticles under the different pH values[21]; (b) SERS spectra of 4-MBA adsorbed on TiO2 and Zn-doped TiO2[22]; (c) schematic diagram of the HOMO and LUMO of 4-MBA, 4-MBA@a-TiO2, and 4-MBA@c-TiO2[24]; (d) scheme of preparation of TiO2 spherical resonators (Trex). SEM image of T-rex100 sample[26].
图 2 (a) a-ZnO NCs和c-ZnO NCs的制备过程; (b) a-和c-ZnO NCs的TEM图像和高分辨透射电镜(High-resolution TEM, HRTEM)显微照片; (c)—(e) 单个a-和c-ZnO NCs上的4-MBA, 4-MPY, 4-ATP分子(10-4 M)的SERS光谱, 实测的(M)和模拟的(S)[32]
Figure 2. (a) A schematic of the fabrication of a- and c-ZnO NCs; (b) SEM and TEM images of a- and c-ZnO NCs.; (c)-(e) SERS spectra of 4-MBA, 4-MPY, and 4-ATP (10-4 M) molecules adsorbed onto a single a- and c-ZnO NC, Measured (M) and simulated (S)[32]
图 3 (a) 4-NBT分子分别在{100}单立方、{110}十二面体和{111}八面体Cu2O粒子上的SERS谱[36]; (b) 分别为立方Cu2O、八面体Cu2O、十二面体Cu2O结构的SEM图[36]; (c) Cu2O立方型超结构的自组装过程[37]
Figure 3. (a) SERS spectra of 4-NBT molecule obtained on single {100}-cubic, {110}-dodecahedral, and {111}-octahedral Cu2O particle, respectively [36]; (b) the SEM images of the cubic Cu2O, octahedral Cu2O, and dodecahedral Cu2O structures[36]; (c) self-assembly process for the formation of Cu2O cube-like superstructures[37].
图 5 (a) 哑铃状MoO2纳米晶的TEM图[12]; (b) 2D MoS2上4-MPy的范德华相互作用的模型示意图[7]; (c) MoO2, MoO2-x纳米粒子的XRD图谱和单斜MoO2晶体结构示意图[43]
Figure 5. (a) TEM images of the MoO2 powders[12]; (b) schematic model of the van der Waals interaction of 4-MPy on top of the 2D MoS2[7]; (c) XRD patterns of MoO2 and MoO2-x nanoparticles; Schematic illustrating the crystal structure of monoclinic MoO2[43].
-
[1] Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163
Google Scholar
[2] Moskovits M 1978 J. Chem. Phys. 69 4159
Google Scholar
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667
Google Scholar
[4] Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51
Google Scholar
[5] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553
Google Scholar
[6] Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792
Google Scholar
[7] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164
Google Scholar
[8] Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878
Google Scholar
[9] Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842
Google Scholar
[10] 赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591
Google Scholar
Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591
Google Scholar
[11] Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231
Google Scholar
[12] Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903
Google Scholar
[13] Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934
Google Scholar
[14] Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452
Google Scholar
[15] Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095
Google Scholar
[16] Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005
Google Scholar
[17] Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322
Google Scholar
[18] Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892
Google Scholar
[19] Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254
Google Scholar
[20] Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542
Google Scholar
[21] Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004
Google Scholar
[22] Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721
Google Scholar
[23] Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294
Google Scholar
[24] Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856
Google Scholar
[25] Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204
Google Scholar
[26] Alessandri I 2013 J. Am. Chem. Soc. 135 5541
Google Scholar
[27] Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886
Google Scholar
[28] Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983
Google Scholar
[29] Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794
Google Scholar
[30] Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281
Google Scholar
[31] Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106
Google Scholar
[32] Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851
Google Scholar
[33] Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477
Google Scholar
[34] Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868
Google Scholar
[35] Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291
Google Scholar
[36] Wang R C, Li C H 2011 Acta Mater. 59 822
Google Scholar
[37] Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274
Google Scholar
[38] Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10
Google Scholar
[39] Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651
Google Scholar
[40] Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784
Google Scholar
[41] Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765
Google Scholar
[42] Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276
Google Scholar
[43] Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683
Google Scholar
[44] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993
Google Scholar
[45] Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800
Google Scholar
[46] Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133
Google Scholar
[47] Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091
Google Scholar
[48] Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282
Google Scholar
[49] Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611
Google Scholar
[50] Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518
Google Scholar
[51] 侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139
Google Scholar
Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139
Google Scholar
[52] Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855
Google Scholar
[53] Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079
Google Scholar
[54] Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318
Google Scholar
[55] Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970
Google Scholar
[56] Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707
Google Scholar
[57] Quagliano L G 2004 J. Am. Chem. Soc. 126 7393
Google Scholar
[58] Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460
Google Scholar
Catalog
Metrics
- Abstract views: 14343
- PDF Downloads: 533
- Cited By: 0