-
Glass formation thermodynamics usually concerns the liquid-crystal Gibbs free energy difference. But, in practice, its efficiency in predicting the occurrence of the glass transition of materials and guiding the composition design is quite quantitative. In particular, it remains to be clarified to understand the relationship between and the contributions to the two fundamental quantities of enthalpy and entropy involved herein. In this paper, we study the relation between the enthalpy and the entropy involved in glass formation of various materials, and find that they are strongly correlated with each other. Theoretical and experimental analyses indicate the intrinsic correlation of the entropy of fusion with other key parameters associated with glass formation like melting viscosity and enthalpy of mixing, which confirms the close relation between the entropy of fusion and glass formation. Close inspection finds that the low entropy of fusion benefits the glass formation. Owing to the fact that the two glass-formation key variables of viscosity and enthalpy can be addressed by the entropy of fusion, we propose that the entropy of fusion be able to serve as a representative thermodynamic quantity to understand the glass formation in materials. The reliability in understanding the glass formation in terms of entropy of fusion is further verified. The studies provide a new reference for developing the glass formation thermodynamics.
-
Keywords:
- glass formation /
- phase transformation /
- thermodynamics
[1] Anderson P W 1995 Science 267 1615
Google Scholar
[2] Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113
Google Scholar
[3] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[4] Turnbull D 1969 Contemp. Phys. 10 473
Google Scholar
[5] Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)
[6] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42
Google Scholar
[7] Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)
[8] Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)
[9] Klement W, Willens R H, Duwez P O L 1960 Nature 187 869
[10] Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235
Google Scholar
[11] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342
Google Scholar
[12] Highmore R J, Greer A L 1989 Nature 339 363
Google Scholar
[13] Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528
Google Scholar
[14] Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702
[15] Kauzmann W 1949 Chem. Rev. 43 219
[16] Angell C A 1995 Science 267 1924
Google Scholar
[17] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200
Google Scholar
[18] Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501
Google Scholar
[19] Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253
Google Scholar
[20] Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78
Google Scholar
[21] Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380
Google Scholar
[22] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671
Google Scholar
[23] Chen H S 1980 Rep. Prog. Phys. 43 353
Google Scholar
[24] Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103
Google Scholar
[25] Sun K H 1947 J. Am. Ceram. Soc. 30 277
Google Scholar
[26] Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62
[27] Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103
Google Scholar
[28] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
Google Scholar
[29] Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372
Google Scholar
[30] Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134
Google Scholar
[31] Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347
Google Scholar
[32] Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139
Google Scholar
[33] Perepezko J H 2004 Prog. Mater. Sci. 49 263
Google Scholar
[34] Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2
[35] Battezzati L 1994 Mater. Sci. Eng. A 178 43
Google Scholar
[36] Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318
Google Scholar
[37] Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707
Google Scholar
[38] Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311
Google Scholar
[39] Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443
Google Scholar
[40] Fultz B 2010 Prog. Mater. Sci. 55 247
Google Scholar
[41] van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11
Google Scholar
[42] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47
Google Scholar
[43] Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123
Google Scholar
[44] Goldstein M, 1969 J. Chem. Phys. 51 3728
Google Scholar
[45] Stillinger F H 1995 Science 267 1935
Google Scholar
[46] Angell C A 2005 Phil. Trans. R. Soc. A 363 415
Google Scholar
[47] Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554
Google Scholar
[48] Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716
Google Scholar
[49] Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559
Google Scholar
[50] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841
Google Scholar
[51] Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1
[52] Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921
Google Scholar
[53] Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71
[54] de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183
Google Scholar
[55] Benson S W 1947 J. Chem. Phys. 15 367
Google Scholar
[56] Myers R T 1979 J. Phys. Chem. 83 294
Google Scholar
[57] Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841
Google Scholar
[58] Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201
Google Scholar
[59] Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049
Google Scholar
[60] 郑兆勃 1979 金属学报 15 155
Zheng Z B 1979 Acta. Metall. Sin. 15 155
[61] Hrubý A 1972 J. Phys. B 22 1187
[62] Inoue A 2000 Acta Mater. 48 279
Google Scholar
[63] Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504
Google Scholar
[64] Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1
Google Scholar
[65] Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163
Google Scholar
[66] Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147
Google Scholar
[67] Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543
Google Scholar
[68] Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474
[69] Weeber A W 1987 J. Phys. F: Met. Phys. 17 809
Google Scholar
[70] Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773
Google Scholar
[71] Miracle D B 2006 Acta Mater. 54 4317
Google Scholar
[72] Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113
Google Scholar
[73] Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9
[74] Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602
Google Scholar
[75] Greer A L 1993 Nature 366 30
[76] Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2
Google Scholar
[77] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546
Google Scholar
[78] Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18
Google Scholar
[79] Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373
Google Scholar
[80] Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523
Google Scholar
[81] Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810
Google Scholar
[82] Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933
Google Scholar
[83] Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17
Google Scholar
[84] Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495
Google Scholar
[85] Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701
Google Scholar
[86] Wang W H 2012 Prog. Mater. Sci. 57 487
Google Scholar
[87] Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052
Google Scholar
[88] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901
Google Scholar
[89] Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378
Google Scholar
[90] Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95
Google Scholar
[91] Jackson K A 2002 Interface Sci. 10 159
Google Scholar
[92] Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709
Google Scholar
[93] Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)
[94] Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620
Google Scholar
[95] Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913
Google Scholar
[96] Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502
Google Scholar
[97] Turnbull D 1981 Metall. Trans. B 12 217
Google Scholar
[98] Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801
Google Scholar
[99] Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202
Google Scholar
[100] Hoffmann H J 2005 Phys. Chem. Glasses 46 570
[101] Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12
Google Scholar
[102] Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651
Google Scholar
[103] Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)
[104] Qian H 1998 J. Chem. Phys. 109 10015
Google Scholar
[105] Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588
[106] Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355
Google Scholar
[107] Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094
Google Scholar
[108] Cornish-Bowden A 2002 J. Biosci. 27 121
Google Scholar
[109] Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327
Google Scholar
[110] Graziano G 2004 J. Chem. Phys. 120 4467
Google Scholar
[111] 赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928
Google Scholar
Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928
Google Scholar
[112] Galwey A K 1977 Adv. Catal. 26 247
[113] Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431
Google Scholar
[114] Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174
Google Scholar
[115] Sharp K 2001 Protein Sci. 10 661
Google Scholar
[116] Eyring H 1935 J. Chem. Phys. 3 107
Google Scholar
[117] Liu L, Guo Q X 2001 Chem. Rev. 101 673
Google Scholar
[118] Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876
Google Scholar
[119] Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652
Google Scholar
[120] Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917
Google Scholar
[121] Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866
Google Scholar
[122] Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118
Google Scholar
[123] Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429
Google Scholar
[124] Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503
Google Scholar
[125] Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427
[126] Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308C
Google Scholar
[127] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171
Google Scholar
[128] Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746
Google Scholar
[129] Reiner M 1964 Phys. Today 17 62
[130] Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249
Google Scholar
[131] Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34
Google Scholar
[132] Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003
Google Scholar
[133] Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502
Google Scholar
[134] Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113
Google Scholar
[135] Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365
Google Scholar
[136] Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102
Google Scholar
[137] Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535
Google Scholar
[138] Tiwari G P 1978 Met. Sci. Heat Treat. 12 317
[139] Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229
[140] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
Google Scholar
[141] Tallon J L 1980 Phys. Lett. A 76 139
Google Scholar
[142] Tallon J L 1989 Nature 342 658
Google Scholar
[143] Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899
Google Scholar
[144] Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26
Google Scholar
[145] Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504
Google Scholar
[146] 卢柯 1992 金属学报 2 8
Lu K 1992 Acta Metall. Sin. 2 8
[147] Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080
Google Scholar
[148] Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924
Google Scholar
[149] Kang H, Wang L M unpublished
[150] Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502
Google Scholar
[151] Wunderlich B 1960 J. Phys. Chem. 64 1052
Google Scholar
[152] Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131
Google Scholar
[153] Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227
Google Scholar
[154] Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843
Google Scholar
[155] Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503
Google Scholar
[156] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505
Google Scholar
[157] Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754
Google Scholar
[158] Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)
[159] Oriani R A 1951 J. Chem. Phys. 19 93
Google Scholar
[160] Martinez L M, Angell C A 2001 Nature 410 663
Google Scholar
[161] Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618
Google Scholar
[162] Battezzati L, Greer A L 1989 Acta Metall. 37 1791
Google Scholar
[163] Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)
[164] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502
Google Scholar
[165] Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)
[166] Kelton K F 1991 Solid State Phys. 45 75
Google Scholar
[167] Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089
Google Scholar
[168] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184
Google Scholar
[169] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501
Google Scholar
[170] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)
[171] Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270
Google Scholar
[172] Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780
Google Scholar
[173] Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501
Google Scholar
[174] Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265
Google Scholar
[175] Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689
Google Scholar
[176] Li P F, Wang L M unpublished.
[177] Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337
Google Scholar
[178] Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149
Google Scholar
[179] Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1
Google Scholar
[180] 翟玉春 2017 非平衡态热力学 (北京: 科学出版社)
Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)
[181] Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97
Google Scholar
[182] Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605
Google Scholar
-
图 6 具有正、负混合热二元小分子共晶体系的过剩熔化熵. 左图为混合热测量曲线, 右图为共晶相图 (a), (b)、共晶点以及纯组元熔化熵(c), (d)和共晶成分过剩熔化熵(e), (f)[101]
Figure 6. Excess entropies of fusion in binary molecular eutectics of positive and negative enthalpies of mixing. Experimental measurements of the enthalpy of mixing is shown in left panel. (a) and (b) in the right panels are the phase diagrams; (c) and (d) show the entropies of fusion of eutectics and pure components; (e) and (f) give the excess entropies of fusion of eutectics[101].
图 7 基于准化学模型在1000 ℃下计算的AB二元体系的摩尔混合热与混合熵. 假设A与B配位数为2, 短程序ΔgA-B分别为定值0, –21, –42和–84 kJ/mol四种情况[102]
Figure 7. Calculated enthalpies and entropies of mixing in a A-B binary system in terms of quasi-chemical model with the fixed coordination number of two but varied short-range ordering ΔgA-B of 0, –21, –42 and 84 kJ/mol[102].
图 11 四个二元碲基窄带隙合金的非晶形成能力图和相图. 左图为SnTe分别与Bi2Te3 (a), Sb2Te3 (b), In2Te3(c)和Ga2Te3 (d)构成的二元体系不同组分熔体淬火样品的XRD图, 右图为相对应的二元相图, 显示固溶度的变化趋势[148]
Figure 11. Phase diagrams and glass forming ability in four binary Tellurium-based alloys. Left panel shows the XRD patterns of the samples obtained by water-quenching in the SnTe alloys with Bi2Te3 (a), Sb2Te3 (b), In2Te3 (c) and Ga2Te3 (d). Binary phase diagrams are presented in the right panel showing the variation of solid solubility[148].
-
[1] Anderson P W 1995 Science 267 1615
Google Scholar
[2] Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113
Google Scholar
[3] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[4] Turnbull D 1969 Contemp. Phys. 10 473
Google Scholar
[5] Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)
[6] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42
Google Scholar
[7] Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)
[8] Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)
[9] Klement W, Willens R H, Duwez P O L 1960 Nature 187 869
[10] Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235
Google Scholar
[11] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342
Google Scholar
[12] Highmore R J, Greer A L 1989 Nature 339 363
Google Scholar
[13] Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528
Google Scholar
[14] Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702
[15] Kauzmann W 1949 Chem. Rev. 43 219
[16] Angell C A 1995 Science 267 1924
Google Scholar
[17] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200
Google Scholar
[18] Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501
Google Scholar
[19] Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253
Google Scholar
[20] Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78
Google Scholar
[21] Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380
Google Scholar
[22] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671
Google Scholar
[23] Chen H S 1980 Rep. Prog. Phys. 43 353
Google Scholar
[24] Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103
Google Scholar
[25] Sun K H 1947 J. Am. Ceram. Soc. 30 277
Google Scholar
[26] Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62
[27] Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103
Google Scholar
[28] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
Google Scholar
[29] Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372
Google Scholar
[30] Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134
Google Scholar
[31] Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347
Google Scholar
[32] Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139
Google Scholar
[33] Perepezko J H 2004 Prog. Mater. Sci. 49 263
Google Scholar
[34] Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2
[35] Battezzati L 1994 Mater. Sci. Eng. A 178 43
Google Scholar
[36] Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318
Google Scholar
[37] Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707
Google Scholar
[38] Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311
Google Scholar
[39] Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443
Google Scholar
[40] Fultz B 2010 Prog. Mater. Sci. 55 247
Google Scholar
[41] van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11
Google Scholar
[42] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47
Google Scholar
[43] Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123
Google Scholar
[44] Goldstein M, 1969 J. Chem. Phys. 51 3728
Google Scholar
[45] Stillinger F H 1995 Science 267 1935
Google Scholar
[46] Angell C A 2005 Phil. Trans. R. Soc. A 363 415
Google Scholar
[47] Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554
Google Scholar
[48] Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716
Google Scholar
[49] Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559
Google Scholar
[50] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841
Google Scholar
[51] Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1
[52] Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921
Google Scholar
[53] Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71
[54] de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183
Google Scholar
[55] Benson S W 1947 J. Chem. Phys. 15 367
Google Scholar
[56] Myers R T 1979 J. Phys. Chem. 83 294
Google Scholar
[57] Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841
Google Scholar
[58] Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201
Google Scholar
[59] Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049
Google Scholar
[60] 郑兆勃 1979 金属学报 15 155
Zheng Z B 1979 Acta. Metall. Sin. 15 155
[61] Hrubý A 1972 J. Phys. B 22 1187
[62] Inoue A 2000 Acta Mater. 48 279
Google Scholar
[63] Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504
Google Scholar
[64] Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1
Google Scholar
[65] Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163
Google Scholar
[66] Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147
Google Scholar
[67] Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543
Google Scholar
[68] Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474
[69] Weeber A W 1987 J. Phys. F: Met. Phys. 17 809
Google Scholar
[70] Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773
Google Scholar
[71] Miracle D B 2006 Acta Mater. 54 4317
Google Scholar
[72] Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113
Google Scholar
[73] Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9
[74] Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602
Google Scholar
[75] Greer A L 1993 Nature 366 30
[76] Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2
Google Scholar
[77] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546
Google Scholar
[78] Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18
Google Scholar
[79] Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373
Google Scholar
[80] Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523
Google Scholar
[81] Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810
Google Scholar
[82] Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933
Google Scholar
[83] Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17
Google Scholar
[84] Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495
Google Scholar
[85] Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701
Google Scholar
[86] Wang W H 2012 Prog. Mater. Sci. 57 487
Google Scholar
[87] Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052
Google Scholar
[88] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901
Google Scholar
[89] Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378
Google Scholar
[90] Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95
Google Scholar
[91] Jackson K A 2002 Interface Sci. 10 159
Google Scholar
[92] Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709
Google Scholar
[93] Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)
[94] Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620
Google Scholar
[95] Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913
Google Scholar
[96] Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502
Google Scholar
[97] Turnbull D 1981 Metall. Trans. B 12 217
Google Scholar
[98] Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801
Google Scholar
[99] Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202
Google Scholar
[100] Hoffmann H J 2005 Phys. Chem. Glasses 46 570
[101] Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12
Google Scholar
[102] Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651
Google Scholar
[103] Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)
[104] Qian H 1998 J. Chem. Phys. 109 10015
Google Scholar
[105] Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588
[106] Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355
Google Scholar
[107] Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094
Google Scholar
[108] Cornish-Bowden A 2002 J. Biosci. 27 121
Google Scholar
[109] Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327
Google Scholar
[110] Graziano G 2004 J. Chem. Phys. 120 4467
Google Scholar
[111] 赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928
Google Scholar
Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928
Google Scholar
[112] Galwey A K 1977 Adv. Catal. 26 247
[113] Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431
Google Scholar
[114] Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174
Google Scholar
[115] Sharp K 2001 Protein Sci. 10 661
Google Scholar
[116] Eyring H 1935 J. Chem. Phys. 3 107
Google Scholar
[117] Liu L, Guo Q X 2001 Chem. Rev. 101 673
Google Scholar
[118] Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876
Google Scholar
[119] Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652
Google Scholar
[120] Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917
Google Scholar
[121] Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866
Google Scholar
[122] Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118
Google Scholar
[123] Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429
Google Scholar
[124] Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503
Google Scholar
[125] Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427
[126] Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308C
Google Scholar
[127] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171
Google Scholar
[128] Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746
Google Scholar
[129] Reiner M 1964 Phys. Today 17 62
[130] Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249
Google Scholar
[131] Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34
Google Scholar
[132] Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003
Google Scholar
[133] Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502
Google Scholar
[134] Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113
Google Scholar
[135] Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365
Google Scholar
[136] Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102
Google Scholar
[137] Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535
Google Scholar
[138] Tiwari G P 1978 Met. Sci. Heat Treat. 12 317
[139] Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229
[140] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
Google Scholar
[141] Tallon J L 1980 Phys. Lett. A 76 139
Google Scholar
[142] Tallon J L 1989 Nature 342 658
Google Scholar
[143] Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899
Google Scholar
[144] Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26
Google Scholar
[145] Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504
Google Scholar
[146] 卢柯 1992 金属学报 2 8
Lu K 1992 Acta Metall. Sin. 2 8
[147] Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080
Google Scholar
[148] Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924
Google Scholar
[149] Kang H, Wang L M unpublished
[150] Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502
Google Scholar
[151] Wunderlich B 1960 J. Phys. Chem. 64 1052
Google Scholar
[152] Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131
Google Scholar
[153] Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227
Google Scholar
[154] Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843
Google Scholar
[155] Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503
Google Scholar
[156] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505
Google Scholar
[157] Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754
Google Scholar
[158] Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)
[159] Oriani R A 1951 J. Chem. Phys. 19 93
Google Scholar
[160] Martinez L M, Angell C A 2001 Nature 410 663
Google Scholar
[161] Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618
Google Scholar
[162] Battezzati L, Greer A L 1989 Acta Metall. 37 1791
Google Scholar
[163] Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)
[164] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502
Google Scholar
[165] Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)
[166] Kelton K F 1991 Solid State Phys. 45 75
Google Scholar
[167] Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089
Google Scholar
[168] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184
Google Scholar
[169] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501
Google Scholar
[170] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)
[171] Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270
Google Scholar
[172] Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780
Google Scholar
[173] Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501
Google Scholar
[174] Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265
Google Scholar
[175] Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689
Google Scholar
[176] Li P F, Wang L M unpublished.
[177] Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337
Google Scholar
[178] Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149
Google Scholar
[179] Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1
Google Scholar
[180] 翟玉春 2017 非平衡态热力学 (北京: 科学出版社)
Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)
[181] Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97
Google Scholar
[182] Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605
Google Scholar
Catalog
Metrics
- Abstract views: 16954
- PDF Downloads: 700
- Cited By: 0