搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向单晶SiC原子级表面制造的等离子体辅助抛光技术

吉建伟 山村和也 邓辉

引用本文:
Citation:

面向单晶SiC原子级表面制造的等离子体辅助抛光技术

吉建伟, 山村和也, 邓辉

Plasma-assisted polishing for atomic surface fabrication of single crystal SiC

Ji Jian-Wei, Kazuya Yamamura, Deng Hui
PDF
HTML
导出引用
  • 目前Si基半导体由于其自身材料特性的限制, 已经越来越难以满足高速发展的现代电力电子技术对半导体器件的性能要求. SiC作为新一代半导体材料具有显著的性能优势, 但由于其属于典型的难加工材料, 实现SiC晶圆的高质量与高效率加工成为了推动其产业化应用进程的关键. 本综述在回顾近年来SiC超精密加工技术研究进展的基础上, 重点介绍了一种基于等离子体氧化改性的SiC高效超精密抛光技术, 分析了该技术的材料去除机理、典型装置、改性过程及抛光效果. 分析结果表明, 该技术具有较高的去除效率, 能够获得原子级平坦表面, 并且不会产生亚表面损伤. 同时针对表面改性辅助抛光技术加工SiC表面过程中出现的台阶现象, 探讨了该台阶结构的产生机理及调控策略. 最后对等离子体辅助抛光技术的发展与挑战进行了展望.
    At present, owing to the inherent limitations of the material characteristics of Si based semiconductor materials, Si based semiconductors are facing more and more challenges in meeting the performance requirements of the rapidly developing modern power electronic technologies used in semiconductor devices. As a new generation of semiconductor material, SiC has significant performance advantages, but it is difficult to process the SiC wafers with high-quality and high-efficiency in their industrial application. Reviewing the research progress of ultra-precision machining technology of SiC in recent years, we introduce plasma oxidation modification based highly efficient polishing technology of SiC in this paper. The material removal mechanism, typical device, modification process, and polishing result of this technology are analyzed. The analysis shows that the plasma oxidation modification possesses high removal efficiency and atomically flat surfaces without surface or subsurface damages. Furthermore, aiming at step-terrace structures produced during SiC surface processing with different polishing technologies, the generation mechanism and control strategy of periodic atomic layer step-terrace structures are discussed. Finally, the development and challenge of plasma-assisted polishing technology are prospected.
      通信作者: 邓辉, dengh@sustech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52035009, 52005243)和深圳市科技创新委员会国际合作项目(批准号: GJHZ20180928155412525)资助的课题
      Corresponding author: Deng Hui, dengh@sustech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52035009, 52005243) and the International Cooperation from the Science and Technology Innovation Committee of Shenzhen Municipality, Shenzhen, China (Grant No. GJHZ20180928155412525)
    [1]

    Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar

    [2]

    Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar

    [3]

    He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar

    [4]

    Mohammed M 2020 Plasmonics 15 1989Google Scholar

    [5]

    Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar

    [6]

    Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar

    [7]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar

    [8]

    Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar

    [9]

    Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar

    [10]

    Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33

    [11]

    Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar

    [12]

    Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar

    [13]

    Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar

    [14]

    Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar

    [15]

    Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar

    [16]

    Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar

    [17]

    Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar

    [18]

    Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar

    [19]

    Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar

    [20]

    Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar

    [21]

    Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar

    [22]

    Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333

    [23]

    Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar

    [24]

    Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar

    [25]

    Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar

    [26]

    Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar

    [27]

    Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar

    [28]

    路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148

    Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148

    [29]

    Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1

    [30]

    Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar

    [31]

    Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar

    [32]

    Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar

    [33]

    Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar

    [34]

    Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166

    [35]

    Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar

    [36]

    Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar

    [37]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [38]

    Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar

    [39]

    Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar

    [40]

    Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar

    [41]

    Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar

    [42]

    Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar

    [43]

    Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar

    [44]

    Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar

    [45]

    Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)

    [46]

    Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar

    [47]

    Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar

    [48]

    Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar

    [49]

    Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1

    [50]

    张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar

    Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar

    [51]

    Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar

    [52]

    Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar

    [53]

    Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05

    [54]

    Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar

    [55]

    Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar

    [56]

    Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar

    [57]

    Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar

    [58]

    Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar

    [59]

    Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar

    [60]

    Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835

    [61]

    Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775

    [62]

    Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar

    [63]

    Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar

    [64]

    Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar

    [65]

    Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar

    [66]

    Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar

    [67]

    Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar

    [68]

    Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar

    [69]

    Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [70]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [71]

    Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [72]

    Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar

    [73]

    Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar

    [74]

    Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar

    [75]

    Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar

    [76]

    Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar

    [77]

    Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar

    [78]

    Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar

    [79]

    Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar

    [80]

    Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar

    [81]

    Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar

    [82]

    Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar

    [83]

    Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24

    [84]

    Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar

    [85]

    Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar

    [86]

    Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar

  • 图 1  PAP技术原理图[45]

    Fig. 1.  Schematic diagram of PAP[45].

    图 2  PAP加工装置 (a)装置示意图[40]; (b)装置实物图[45]; (c)抛光垫截面图及SEM图[45]

    Fig. 2.  PAP machine: (a) The schematic view[40]; (b) photograph of the apparatus[45]; (c) cross-sectional structure and SEM image of the polishing film[45].

    图 3  等离子体OES谱[45] (a)反应气体为水蒸气; (b)反应气体为O2

    Fig. 3.  OES spectra[45] of plasma: (a) Water vapor contained plasma; (b) oxygen contained plasma.

    图 4  球盘式摩擦磨损实验[45] (a)实验装置示意图; (b)实验结果

    Fig. 4.  Ball-on-disc wear test[45]: (a) Schematic view of the experimental apparatus; (b) the experimental results.

    图 5  以水蒸气为反应气体的等离子体改性后表面XTEM图[48]

    Fig. 5.  XTEM image of surface irradiated by water vapor contained plasma[48].

    图 6  改性前后4H-SiC(0001)纳米压痕实验[49] (a)载荷位移曲线; (b)计算获得的硬度值

    Fig. 6.  Nano-indentation tests of 4H-SiC(0001) before and after surface modification[49]: (a) Load-displacement curve; (b) hardness calculated from measured data.

    图 7  CMP加工SiC的AFM图(PV表示最高和最低处的差值; RMS是均方根)[45] (a) 金刚石抛光液(PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3抛光液(PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2抛光液(PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2抛光液(PV, 0.68 nm; RMS, 0.08 nm)

    Fig. 7.  AFM images of CMP-processed SiC (PV, peak to valley; RMS, root mean square)[45]: (a) Diamond slurry (PV, 2.46 nm; RMS, 0.30 nm); (b) Al2O3 slurry (PV, 30.63 nm; RMS, 1.28 nm); (c) SiO2 slurry (PV, 2.01 nm; RMS, 0.15 nm); (d) CeO2 slurry (PV, 0.68 nm; RMS, 0.08 nm).

    图 8  加工后4H-SiC的WLI测量结果[40] (a)不使用等离子体改性, 而仅以CeO2抛光后表面(PV, 5.49 nm; RMS, 0.57 nm); (b) PAP技术加工后表面(PV, 1.89 nm; RMS, 0.28 nm)

    Fig. 8.  WLI images of processed 4H-SiC wafer[40]: (a) The surface polished by ceria abrasive without plasma irradiation (PV, 5.49 nm; RMS, 0.57 nm); (b) the surface processed by PAP (PV, 1.89 nm; RMS, 0.28 nm).

    图 9  不同加工阶段的SiC样品AFM图[45] (a)加工前SiC表面; (b) PAP技术加工过程中SiC表面; (c) PAP技术最终加工结果

    Fig. 9.  AFM images of the surface of SiC substrate during different polishing stages[45]: (a) The unprocessed SiC surface; (b) SiC surface at the in-process stage of PAP; (c) SiC surface at the final stage of PAP.

    图 10  PAP技术加工后4H-SiC样品XTEM图[49] (a) 低分辨率图像; (b) 高分辨率图像

    Fig. 10.  (a) Low and (b) high resolution XTEM image of 4H-SiC surface processed by PAP[49].

    图 11  RHEED测量结果[40] (a) PAP加工后样品的RHEED图; (b)加工前后两样品的晶格常数

    Fig. 11.  Measurement results of RHEED[40]: (a) RHEED pattern of the SiC wafer processed by PAP; (b) lattice constants calculated from the RHEED pattern.

    图 12  多次进行等离子体辐照和HF浸泡后的4H-SiC表面WLI图[48] (a)金刚石磨料抛光获得的初始表面(PV, 11.14 nm; RMS, 1.80 nm); (b)第一次处理后的结果(PV, 6.65 nm; RMS, 1.02 nm); (c)第二次处理后的结果(PV, 8.39 nm; RMS, 2.83 nm); (d)第三次处理后的结果(PV, 2.45 nm; RMS, 0.45 nm)

    Fig. 12.  WLI images of processed 4H-SiC surfaces[48]: (a) Diamond lapped surface (PV, 11.14 nm; RMS, 1.80 nm); (b) after the first cycle of plasma oxidation and HF dipping (PV, 6.65 nm; RMS, 1.02 nm); (c) after the second cycle (PV, 8.39 nm; RMS, 2.83 nm); (d) after the third cycle (PV, 2.45 nm; RMS, 0.45 nm).

    图 13  等离子体辐照和HF刻蚀处理之后的SiC表面AFM图[48] (PV, 0.95 nm; RMS, 0.11 nm)

    Fig. 13.  AFM image of the SiC sueface processed by plasma oxidation followed by HF dipping[48] (PV, 0.95 nm; RMS, 0.11 nm).

    图 14  等离子体辐照后4H-SiC样品表面的XTEM图[45]

    Fig. 14.  XTEM images of water vapor contained plasma irradiated 4H-SiC surface[45].

    图 15  4H-SiC(0001)表面台阶结构的键结构(观察方向[1120])[64]

    Fig. 15.  Bond configuration of step-terrace structure on a 4H-SiC(0001) surface viewed from the [1120] direction[64].

    图 16  4H-SiC台阶状结构形成机制[65] (a)化学改性占主导机制, 产生a-b-a*-b*型结构; (b)化学改性作用与磨粒物理去除作用相当, 产生a-b型结构; (c)磨粒物理去除作用占主导机制, 形成a-a型结构

    Fig. 16.  Probable formation mechanism of step-terrace structure of 4H-SiC[65]: (a) Surface modification was dominant, resulting in the formation of the a-b-a*-b* type step-terrace structure; (b) physical removal was comparable with surface modification, resulting in the formation of the a-b type step-terrace structure; (c) physical removal was dominant, resulting in the formation of the a-a type step-terrace structure.

    图 17  在抛光盘转速不同情况下, 抛光后的SiC表面的不同台阶状结构的AFM图[65] (a) 500 r/min; (b) 1500 r/min; (c) 2500 r/min

    Fig. 17.  AFM images of different step structures on SiC surface after polishing with different polishing speed of (a) 500, (b) 1500, (c) 2500 r/min.

    Baidu
  • [1]

    Bencherif H, Pezzimenti F, Dehimi L, Della C 2020 Appl. Phys. A 126 854Google Scholar

    [2]

    Haddud A, Desouza A, Khare A, Lee H 2017 J. Manuf. Technol. Mana. 28 1055Google Scholar

    [3]

    He Y, Clark G, Schaibley J, He Y, Chen M, Wei Y, Ding X, Zhang Q, Yao W, Xu X, Lu C, Pan J 2015 Nat. Nanotechnol. 10 497Google Scholar

    [4]

    Mohammed M 2020 Plasmonics 15 1989Google Scholar

    [5]

    Kim S, Ahn H, Lim J, Lee K 2019 J. Korean Phys. Soc. 74 196Google Scholar

    [6]

    Kimura M, Koga Y, Nakanishi H, Matsuda T, Kameda T, Nakashima Y 2017 IEEE J. Electron Devi. 6 100Google Scholar

    [7]

    Zhang Q, Cheng L, Boutaba R 2010 J. Internet. Serv. Appl. 1 7Google Scholar

    [8]

    Umezawa H, Nagase M, Kato Y, Shikata S 2012 Diam. Relat. Mater. 24 201Google Scholar

    [9]

    Sharofidinov S, Kukushkin S, Redkov A, Grashchenko A, Osipov A 2019 Tech. Phys. Lett. 45 711Google Scholar

    [10]

    Domnich V, Aratyn Y, Kriven W, Gogotsi Y 2008 Rev. Adv. Mater. Sci. 17 33

    [11]

    Qian J, Voronin G, Zerda T, He D, Zhao Y 2002 J. Mater. Res. 17 2153Google Scholar

    [12]

    Casady J, Johnson R 1996 Solid State Electron. 39 1409Google Scholar

    [13]

    Luo Q, Lu J, Xu X 2016 Wear 350/351 99Google Scholar

    [14]

    Li N, Ding J, Xuan Z, Huang J, Lin Z 2018 Strength Mater. 50 419Google Scholar

    [15]

    Dai S, Lei H, Fu J 2020 J. Electron. Mater. 49 1301Google Scholar

    [16]

    Heydemann V, Everson W, Gamble R, Snyder D, Skowronski M 2004 Mater. Sci. Forum 457/460 805Google Scholar

    [17]

    Zhou L, Audurier V, Pirouz P, Powell J 1997 J. Electrochem. Soc. 144 161Google Scholar

    [18]

    Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H 2013 J. Mater. Sci. Mater. Electron. 24 5040Google Scholar

    [19]

    Kato T, Wada K, Hozomi E, Taniguchi H, Miura T, Nishizawa S, Arai K 2007 Mater. Sci. Forum 556/557 753Google Scholar

    [20]

    Neslen C, Mitchel W, Hengehold R 2001 J. Electron. Mater. 30 1271Google Scholar

    [21]

    Lee H, Kim M, Jeong H 2015 Int. J. Precis. Eng. Manuf. 16 2611Google Scholar

    [22]

    Lee H, Kim D, An J, Lee H, Kim K, Jeong H 2010 CIRP Ann. Manuf. Techn. 59 333

    [23]

    Kurokawa S, Doi T, Wang C, Sano Y, Aida H, Oyama K, Takahashi K 2014 ECS Trans. 60 641Google Scholar

    [24]

    Zhou Y, Pan G S, Shi X L, Gong H, Luo G H, Gu Z H 2014 Surf. Coat. Tech. 251 48Google Scholar

    [25]

    Shi X L, Pan G S, Zhou Y, Gu Z H, Gong H, Zou C L 2014 Appl. Surf. Sci. 307 414Google Scholar

    [26]

    Liang H, Yan Q, Lu J, Luo B, Xiao X 2019 Int. J. Adv. Manuf. Tech. 103 1337Google Scholar

    [27]

    Zhai W J, Gao B, Chang J, Wang H 2019 Nanomanuf. Metrol. 2 36Google Scholar

    [28]

    路家斌, 熊强, 阎秋生, 王鑫, 廖博涛 2019 表面技术 48 148

    Lu J B, Xiong Q, Yan Q S, Wang X, Liao B T 2019 Surf. Tech. 48 148

    [29]

    Murata J, Yodogawa K, Ban K 2017 Int. J. Mach. Tool. Manu. 114 1

    [30]

    Shen X, Tu Q, Deng H, Jiang G, He X, Liu B, Yamamura K 2016 Appl. Phys. A 122 354Google Scholar

    [31]

    Deng H, Hosoya K, Imanishi Y, Endo K, Yamamura K 2015 Electrochem. Commun. 52 5Google Scholar

    [32]

    Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M 2012 Precis. Eng. 36 137Google Scholar

    [33]

    Kubota A, Yagi K, Murata J, Yasui H, Miyamoto S, Hara H, Sano Y, Yamauchi K 2009 J. Electron. Mater. 38 159Google Scholar

    [34]

    Zhang P, Feng X, Yang J 2014 J. Semicond. 35 166

    [35]

    Nitta H, Isobe A, Hong P, Hirao T 2011 Jpn. J. Appl. Phys. 50 046501Google Scholar

    [36]

    Kubota A, Fukuyama S, Ichimori Y, Touge M 2012 Diam. Relat. Mater. 24 59Google Scholar

    [37]

    Ballarin N, Carraro C, Maboudian R, Magagnin L 2014 Electrochem. Commun. 40 17Google Scholar

    [38]

    Lin Y, Kao C 2005 Int. J. Adv. Manuf. Tech. 25 33Google Scholar

    [39]

    Yamamura K, Takiguchi T, Ueda M, Hattori A, Zettsu N 2010 Adv. Mat. Res. 126-128 423Google Scholar

    [40]

    Yamamura K, Takiguchi T, Ueda M, Deng H, Hattori A, Zettsu N 2011 CIRP Ann. Manuf. Techn. 60 571Google Scholar

    [41]

    Mori Y, Yamamura K, Sano Y 2004 Rev. Sci. Instrum. 75 942Google Scholar

    [42]

    Sano Y, Yamamura K, Mimura H, Yamauchi K, Mori Y 2007 Rev. Sci. Instrum. 78 086102Google Scholar

    [43]

    Yamamura K, Ueda K, Nagano M, Zettsu N, Maeo S, Shimada S, Utaka T, Taniguchi K 2010 Nucl. Instrum. Meth. A 616 281Google Scholar

    [44]

    Sun R, Yang X, Watanabe K, Miyazaki S, Fukano T, Kitada M, Arima K, Kawai K, Yamamura K 2019 Nanomanuf. Metrol. 2 168Google Scholar

    [45]

    Deng H 2016 Ph. D. Dissertation (Osaka: Osaka University)

    [46]

    Harb T, Kedzierski W, McConkey J 2001 J. Chem. Phys. 115 5507Google Scholar

    [47]

    Krstulovic N, Labazan I, Milosevic S, Cvelbar U, Vesel A, Mozetic M 2006 J. Phys. D: Appl. Phys. 39 3799Google Scholar

    [48]

    Deng H, Yamamura K 2013 CIRP Ann. Manuf. Techn. 62 575Google Scholar

    [49]

    Deng H, Ueda M, Yamamura K 2014 Int. J. Adv. Manuf. Tech. 72 1

    [50]

    张海霞, 张泰华, 郇勇 2003 微纳电子技术 40 245Google Scholar

    Zhang H X, Zhang T H, Huan Y 2003 Micronanoelectron. Tech. 40 245Google Scholar

    [51]

    Ashida K, Dojima D, Kutsuma Y, Torimi S, Nogami S, Imai Y, Kimura S, Mizuki J, Ohtani N, Kaneko T 2016 MRS Advances 1 3697Google Scholar

    [52]

    Lakhdari F, Belkhir N, Bouzid D, Herold V 2019 Int. J. Adv. Manuf. Tech. 102 1421Google Scholar

    [53]

    Deng H, Takiguchi T, Ueda M, Hattori1 A, Zettsu N, Yamamura K 2011 Jpn. J. Appl. Phys. 50 08JG05

    [54]

    Palmieri R, Radtke C, Boudinov H, Silva E 2009 Appl. Phys. Lett. 95 113504Google Scholar

    [55]

    Shi X, Pan G, Zhou Y, Zou C, Gong H 2013 Appl. Surf. Sci. 284 195Google Scholar

    [56]

    Shi X, Pan G, Zhou Y, Xu L, Zou C, Gong H 2015 Surf. Coat. Tech. 270 206Google Scholar

    [57]

    Okamoto T, Sano Y, Tachibana K, Arima K, Hattori A, Yagi K, Murata J, Sadakuni S, Yamauchiet K 2011 J. Nanosci. Nanotechno. 11 2928Google Scholar

    [58]

    Hara H, Sano Y, Mimura H, Arima K, Kubota A, Yagi K, Murata J, Yamauchi K 2006 J. Electron. Mater. 35 11Google Scholar

    [59]

    Kubota A, Mimura H, Inagaki K, Arima K, Mori Y, Yamauchi K 2005 J. Electron. Mater. 34 439Google Scholar

    [60]

    Okamoto T, Sano Y, Hara H, Mimura H, Arima K, Yagi K, Murata J, Yamauchi K 2009 Mater. Sci. Forum 600-603 835

    [61]

    Okamoto T, Sano Y, Hara H, Hatayama T, Arima K, Yagi K, Murata J, Sadakuni S, Tachibana K, Shirasawa Y, Mimura H, Fuyuki T, Yamauchi K 2010 Mater. Sci. Forum 645-648 775

    [62]

    Deng H, Endo K, Yamamura K 2013 Appl. Phys. Lett. 103 111603Google Scholar

    [63]

    Deng H, Endo K, Yamamura K 2014 Appl. Phys. Lett. 104 101608Google Scholar

    [64]

    Deng H, Monna K, Tabata T, Endo K, Yamamura K 2014 CIRP Ann. Manuf. Techn. 63 529Google Scholar

    [65]

    Deng H, Endo K, Yamamura K 2015 Sci. Rep. 5 8947Google Scholar

    [66]

    Rokicki R, Hryniewicz R 2012 T. I. Met. Finish. 90 188Google Scholar

    [67]

    Suratwala T, Steele W, Wong L, Feit M, Miller P, Spears R, Shen N, Desjardin R 2015 J. Am. Ceram. Soc. 98 2395Google Scholar

    [68]

    Shaw J, Heine V 1990 J. Phys. Condens. Mater. 2 4351Google Scholar

    [69]

    Chien F, Nutt S, Yoo W, Kimoto K, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [70]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [71]

    Heine V, Cheng C, Needs R 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [72]

    Yazdi G, Vasiliauskas R, Iakimov T, Zakharov A, Syvajarvi M, Yakimova R 2013 Carbon 57 477Google Scholar

    [73]

    Arima K, Hara H, Murata J, Ishida T, Okamoto R, Yagi K, Sano Y, Mimura H, Yamauchi K 2007 Appl. Phys. Lett. 90 202106Google Scholar

    [74]

    Hoshino T, Kurata Y, Terasaki Y, Susa K 2001 J. Non-Cryst. Solids 283 129Google Scholar

    [75]

    Oh M, Singh R, Gupta S, Cho S 2010 Microelectron. Eng. 87 2633Google Scholar

    [76]

    Zho L, Eda H, Shimizu J, Kamiya S, Iwase H, Kimura S 2006 CIRP Ann. Manuf. Techn. 55 313Google Scholar

    [77]

    Tian Y, Zhou L, Shimizu J, Tashiro Y, Kang R 2009 Appl. Surf. Sci. 255 4205Google Scholar

    [78]

    Kamiya S, Iwase H, Kishita K, Zhou L, Eda H, Yoshida Y 2009 J. Vac. Sci. Technol. B 27 1496Google Scholar

    [79]

    Deng H, Endo K, Yamamura K 2015 Appl. Phys. Lett. 107 051602Google Scholar

    [80]

    Deng H, Endo K, Yamamura K 2015 CIRP Ann. Manuf. Techn. 64 531Google Scholar

    [81]

    Yamamura K, Emori K, Sun R, Ohkubo Y, Endo K, Yamada H, Chayahara A, Mokuno Y 2018 CIRP Ann. Manuf. Techn. 67 353Google Scholar

    [82]

    Deng H, Endo K, Yamamura K 2017 Int. J. Mach. Tool. Manu. 115 38Google Scholar

    [83]

    Deng H, Yamamura K 2012 Curr. Appl. Phys. 12 S24

    [84]

    Shen X, Dai Y, Deng H, Guan C, Yamamura K 2013 Opt. Express 21 26123Google Scholar

    [85]

    Shen X, Tu Q, Deng H, Jiang G, Yamamura K 2015 Opt. Eng. 54 055106Google Scholar

    [86]

    Fang F 2020 Int. J. Extrem. Manuf. 2 030201Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响.  , 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [3] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展.  , 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [4] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响.  , 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [6] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能.  , 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像.  , 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [8] 李宗宝, 王霞, 周瑞雪, 王应, 李勇. Cu-Ag协同表面改性TiO2的第一性原理研究.  , 2017, 66(11): 117101. doi: 10.7498/aps.66.117101
    [9] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境非偏置固体表面带电研究.  , 2013, 62(11): 119401. doi: 10.7498/aps.62.119401
    [10] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究.  , 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [11] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化.  , 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [14] 孟 亮, 张 杰, 朱晓东, 温晓辉, 丁 芳. 热丝辅助双偏压氢等离子体制造金刚石锥状表面研究.  , 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [15] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽. 管状铝质材料的等离子体电解沉积行为研究.  , 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质.  , 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理.  , 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [18] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究.  , 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子.  , 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程.  , 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  11500
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 修回日期:  2020-12-22
  • 上网日期:  2021-03-10
  • 刊出日期:  2021-03-20

/

返回文章
返回
Baidu
map