搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能

彭静 徐智谋 王双保 董泽华

引用本文:
Citation:

非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能

彭静, 徐智谋, 王双保, 董泽华

Metal organic decomposition technique and optical propertiesof amorphous Ba0.7Sr0.3TiO3 thin films

Wang Shang-Bao, Dong Ze-Hua, Xu Zhi-Mou, Peng Jing
PDF
导出引用
  • 本文采用2-辛酸钡(Ba(C8H15O2)2)和3-甲基丁基醋酸盐(CH3COOC2H4CH(CH3)2-)为基的特殊前驱体溶液,在硅和石英基片上低温制备Ba0.7Sr0.3TiO3 (BST0.7)薄膜.性能测试结果表明,厚度约为214 nm的非晶BST0.7薄膜的光学带隙能和折射率分别为4.27 eV和n=1.94.薄膜在可见光和近红外区域的消光系数远远低于多晶BST薄膜,约为10-3数量级.激发波长为450 nm时,在室温环境下非晶BST0.7薄膜在波长520—610 nm处发出强烈的可见光,峰值为540—570 nm,而结晶态的BST0.7薄膜则无发光现象.
    With the development of Si-based optical integrated circuit, much attention has been paid to the crystalline and amorphous (BaxSr1-x)TiO3(BST) films due to its good optical properties. In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown on the fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure from barium 2-caprylate Ba(C8H15O2)2 and 3-methylbutyl acetate CH3COOC2H4CH(CH3)2-based special precursors. The optical constants of amorphous BST0.7 thin films including refractive index, extinction coefficient and optical band gap energies were presented. Photoluminescence spectra of BST0.7 films were also observed. The calculated extinction coefficient of 214-nm-thick amorphous BST0.7 thin films in visible and near-infrared region was of the order of 10-3, which is much lower than that of polycrystalline BST thin films. The optical band gap energy and refractive index n were estimated to be about 4.27 eV and n=1.94, respectively. Intensive photoluminescence at room temperature was achieved in the 520 to 610 nm wavelength range with a strong visible peak at 540—570 nm when excited by 450 nm laser light. No photoluminescence was observed in crystalline BST0.7 thin films.
    • 基金项目: 国家自然科学基金(批准号:60607006,61076402),教育部留学回国基金(批准号:20081667),湖北省自然科学基金(批准号:2007ABA058)资助的课题.
    [1]

    Kip D 1998 Appl. Phys. B 67 131

    [2]

    Liu Y, Nagra A S, Erker E G, Periiaswamy P, Taylor T R, Speck J, York R A 2000 IEEE Microw. Guided Wave Lett. 10 448

    [3]

    Rao J B L, Patel D P, Krichevsky V 1999 IEEE Trans. Antennas Propog. 47 458

    [4]

    Noren B, 2004 Microw. J. 47 210

    [5]

    Sekhar M C 2004 Mod. J. Phys. B 8 2153

    [6]

    Kozyrev A, Ivanov A, Keis V, Khazov M, Osadchy V, Samoilova T, Soldatenkov O, Pavlov A, Koepf G, Mueller C, Galt D, Rivkin T 1998 IEEE MTT-S Int. Microw. Symp. Dig. 2 985

    [7]

    Kim D Y, Moon S E, Kim E K, Korean J 2003 Phys. Soc. 42 1347

    [8]

    Kim D Y, Moon S E, Kim E K, Lee S J, Choi J J, Kim H E 2003 Appl. Phys. Lett. 82 1455

    [9]

    Xu Z M, Yuichiro Tanushi, Masato Suzuki, Shin Yokoyama 2006 Appl. Phys. Lett. 88 161107

    [10]

    Auciello O, Saha S, Kaufman D Y 2004 J. Electroceram. 12 119

    [11]

    Saha S, Krupanidhi S B 2000 J. Appl. Phys. 87 849

    [12]

    Wang D Y, Mak C L, Wong K H 2004 Ceram. Int. 30 1745

    [13]

    Thielsch R, Kaemmer K, Holzapfel B 1997 Thin Solid Films 301 203

    [14]

    Regnery S, Ehrhart P, Szot K 2003 Integr. Ferroelectr. 57 1175

    [15]

    Roy S C, Sharma G L, Bhatnagar M C 2004 Appl. Surf. Sci. 236 306

    [16]

    Chen S Y, Wang H W, Huang L C 2002 Mater. Chem. Phys. 77 632

    [17]

    Tahan D M, Safari A, Klein L C 1996 J. Am. Ceram. Soc. 6 1593

    [18]

    Jana P, Pandey R K 1997 Intergr. Ferroelec. 17 153

    [19]

    Neumayer D A, Duncombe P R, Laibowitz R B, Grill A 1997 Intergr. Ferroelec. 18 297

    [20]

    Zhu W, Tan O K, Deng J, Oh J T 2000 J. Mater. Res. 15 1291

    [21]

    Kim T G, Oh J, Kim Y, Moon T, Hong K S, Parky B 2003 Jpn. J. Appl.Phys. 42 1315

    [22]

    Melo D M A, Cesar A, Martinelli A E, Silva Z R, Leite E R, Longo E, Pizanni P S 2004 J. Solid State Chem. 177 670

    [23]

    Pontes F M, Leite E R, Pontes D S L, Longo E 2002 J. Appl. Phys. 91 5972

    [24]

    Manifacier J C, Gasiot J, Fillard J P 1976 J. Phys. E, Sci. Instrum. 9 1002

    [25]

    Swanepoel R 1983 J. Phys. E, Sci. Instrum. 16 1214

    [26]

    Panda B, Dhar A, Nigam G D, Bhattacharya D, Ray S K 1998 Thin Solid Films 332 46

    [27]

    Bao D, Yao X, Wakiya N, Shinozaki K, Mizutani N 2001 Appl. Phys. Lett. 79 3767

    [28]

    Tauc J C 1974 Amorphous and Liquid Semiconductor (New York:Plenum Press)

    [29]

    Tauc J C 1972 Optical Properties of Solids (North-Holland:Amsterdam)

    [30]

    Wang Y P, Tseng T Y 1999 J. Mater. Sci. 34 4573

    [31]

    Tchelbou F, Ryu H S, Hong C K, Park W S, Balk S 1997 Thin Solid Films 299 14

    [32]

    Xu Z M, Suzuki M, Yokoyama S 2005 Jpn. J. Appl. Phys. 44 8507

    [33]

    Hodes G, Yaron A A, Decker F, Motisuka P 1987 Phys. Rev. B 36 4215

    [34]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovolt. Res. Appl. 12 69

  • [1]

    Kip D 1998 Appl. Phys. B 67 131

    [2]

    Liu Y, Nagra A S, Erker E G, Periiaswamy P, Taylor T R, Speck J, York R A 2000 IEEE Microw. Guided Wave Lett. 10 448

    [3]

    Rao J B L, Patel D P, Krichevsky V 1999 IEEE Trans. Antennas Propog. 47 458

    [4]

    Noren B, 2004 Microw. J. 47 210

    [5]

    Sekhar M C 2004 Mod. J. Phys. B 8 2153

    [6]

    Kozyrev A, Ivanov A, Keis V, Khazov M, Osadchy V, Samoilova T, Soldatenkov O, Pavlov A, Koepf G, Mueller C, Galt D, Rivkin T 1998 IEEE MTT-S Int. Microw. Symp. Dig. 2 985

    [7]

    Kim D Y, Moon S E, Kim E K, Korean J 2003 Phys. Soc. 42 1347

    [8]

    Kim D Y, Moon S E, Kim E K, Lee S J, Choi J J, Kim H E 2003 Appl. Phys. Lett. 82 1455

    [9]

    Xu Z M, Yuichiro Tanushi, Masato Suzuki, Shin Yokoyama 2006 Appl. Phys. Lett. 88 161107

    [10]

    Auciello O, Saha S, Kaufman D Y 2004 J. Electroceram. 12 119

    [11]

    Saha S, Krupanidhi S B 2000 J. Appl. Phys. 87 849

    [12]

    Wang D Y, Mak C L, Wong K H 2004 Ceram. Int. 30 1745

    [13]

    Thielsch R, Kaemmer K, Holzapfel B 1997 Thin Solid Films 301 203

    [14]

    Regnery S, Ehrhart P, Szot K 2003 Integr. Ferroelectr. 57 1175

    [15]

    Roy S C, Sharma G L, Bhatnagar M C 2004 Appl. Surf. Sci. 236 306

    [16]

    Chen S Y, Wang H W, Huang L C 2002 Mater. Chem. Phys. 77 632

    [17]

    Tahan D M, Safari A, Klein L C 1996 J. Am. Ceram. Soc. 6 1593

    [18]

    Jana P, Pandey R K 1997 Intergr. Ferroelec. 17 153

    [19]

    Neumayer D A, Duncombe P R, Laibowitz R B, Grill A 1997 Intergr. Ferroelec. 18 297

    [20]

    Zhu W, Tan O K, Deng J, Oh J T 2000 J. Mater. Res. 15 1291

    [21]

    Kim T G, Oh J, Kim Y, Moon T, Hong K S, Parky B 2003 Jpn. J. Appl.Phys. 42 1315

    [22]

    Melo D M A, Cesar A, Martinelli A E, Silva Z R, Leite E R, Longo E, Pizanni P S 2004 J. Solid State Chem. 177 670

    [23]

    Pontes F M, Leite E R, Pontes D S L, Longo E 2002 J. Appl. Phys. 91 5972

    [24]

    Manifacier J C, Gasiot J, Fillard J P 1976 J. Phys. E, Sci. Instrum. 9 1002

    [25]

    Swanepoel R 1983 J. Phys. E, Sci. Instrum. 16 1214

    [26]

    Panda B, Dhar A, Nigam G D, Bhattacharya D, Ray S K 1998 Thin Solid Films 332 46

    [27]

    Bao D, Yao X, Wakiya N, Shinozaki K, Mizutani N 2001 Appl. Phys. Lett. 79 3767

    [28]

    Tauc J C 1974 Amorphous and Liquid Semiconductor (New York:Plenum Press)

    [29]

    Tauc J C 1972 Optical Properties of Solids (North-Holland:Amsterdam)

    [30]

    Wang Y P, Tseng T Y 1999 J. Mater. Sci. 34 4573

    [31]

    Tchelbou F, Ryu H S, Hong C K, Park W S, Balk S 1997 Thin Solid Films 299 14

    [32]

    Xu Z M, Suzuki M, Yokoyama S 2005 Jpn. J. Appl. Phys. 44 8507

    [33]

    Hodes G, Yaron A A, Decker F, Motisuka P 1987 Phys. Rev. B 36 4215

    [34]

    Chopra K L, Paulson P D, Dutta V 2004 Prog. Photovolt. Res. Appl. 12 69

  • [1] 方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国. 基于物理信息神经网络的金属表面吸收率测量方法.  , 2024, 73(9): 094301. doi: 10.7498/aps.73.20231453
    [2] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究.  , 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] 蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强. 混合型碘系钙钛矿薄膜变温光致发光特性的研究.  , 2019, 68(24): 246801. doi: 10.7498/aps.68.20191238
    [4] 刘海永, 张敏, 林国强, 韩克昌, 张林. 脉冲偏压电弧离子镀Cr-O薄膜结构及光学性能研究.  , 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [5] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能.  , 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [6] 张奇伟, 翟继卫, 岳振星. 钛酸锶钡材料在外加电场作用下的拉曼光谱研究.  , 2013, 62(23): 237702. doi: 10.7498/aps.62.237702
    [7] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响.  , 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜.  , 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [9] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究.  , 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [10] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究.  , 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [11] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究.  , 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [12] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究.  , 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [13] 俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强. 高调谐BST薄膜制备及介电性能研究.  , 2011, 60(7): 077701. doi: 10.7498/aps.60.077701
    [14] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响.  , 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [15] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究.  , 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [16] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析.  , 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [17] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [18] 刘爱云, 孟祥建, 薛建强, 孙璟兰, 马建华, 汪 琳, 褚君浩. 化学溶液法制备的Pb(Mg1/3Nb2/3)O3-PbTiO3薄膜的光学性能.  , 2006, 55(6): 3128-3131. doi: 10.7498/aps.55.3128
    [19] 沈 健, 刘守华, 沈自才, 孔伟金, 黄建兵, 邵建达, 范正修. 基底微缺陷对介质薄膜光学性能影响的理论研究.  , 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
    [20] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联.  , 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
计量
  • 文章访问数:  8993
  • PDF下载量:  1092
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-04
  • 修回日期:  2010-09-13
  • 刊出日期:  2011-05-15

/

返回文章
返回
Baidu
map