Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laboratory study of non-ideal effects in magnetically collimated astrophysical outflows

Tao Tao

Citation:

Laboratory study of non-ideal effects in magnetically collimated astrophysical outflows

Tao Tao
PDF
HTML
Get Citation
  • Central outflow’s collimation by magnetic field is an important theoretical mechanism for explaining the astrophysical objects’ morphology formation, and its credibility has been tested in many laser plasma experiments in a dimensionless manner. This article introduces integrated simulation and experiment work based on the present laboratory magnetically collimated jet framework, to explore how non-ideal terms’ strength including radiative cooling and magnetic diffusion from different targets can affect the outflow shape. The interaction between outflow from a target with low atomic number and external field satisfies the ideal magneto-hydrodynamic conditions, and the outflow shape results in diamagnetic cavity and jet; on the other hand, a heavy element target brings strong magnetic diffusion that destroys the collimation structure, together with the stagnation of outflow introduced by radiative cooling, and outflow shape results in weakly collimated hemisphere near the target and a detached magnetized density clump. The detailed dimensionless analysis shows that the large-scale dissipation of jets in young stellar objects can possibly be an analog of the laboratory jet’s magnetic diffusion breakup, also similar structures like the loosely collimated lobes and bright ansaes in planetary nebula can be observed in highly diffusive laboratory outflows. This article shows for the first time that a series of non-relativistic astronomical outflows’ dynamic behaviors can be explained by the non-ideal magneto-hydrodynamic evolution of laboratory plasmas.
      Corresponding author: Tao Tao, tt397396@mail.ustc.edu.cn
    • Funds: Project supported by Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the National Natural Science Foundation of China (Grant No. 11475171), and Science Challenge Project, China (Grant No. TZ2016005)
    [1]

    Bally J 2016 Annu. Rev. Astron. Astrophys. 54 491Google Scholar

    [2]

    Balick B, Frank A 2002 Annu. Rev. Astron. Astrophys. 40 439Google Scholar

    [3]

    Blandford R, Payne D 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [4]

    Spruit H, Foglizzo T, Stehle R 1997 Mon. Not. R. Astron. Soc. 288 333Google Scholar

    [5]

    García-Segura G 1997 Astrophys. J. Lett. 489 L189Google Scholar

    [6]

    García-Segura G, Taam R E, Ricker P M 2020 arXiv preprint arXiv: 2003.06073

    [7]

    Blondin J M, Fryxell B A, Konigl A 1990 Astrophys. J. 360 370Google Scholar

    [8]

    Fendt C, Čemeljić M 2002 Astron. Astrophys. 395 1045Google Scholar

    [9]

    Remington B A, Arnett D, et al. 1999 Science 284 1488Google Scholar

    [10]

    Drake R 1999 J. Geophys. Res. Space Phys. 104 14505Google Scholar

    [11]

    Takabe H 2001 Prog. Theor. Phys. Supp. 143 202Google Scholar

    [12]

    Lebedev S, Chittenden J, Beg F, et al. 2002 Astrophys. J. 564 113Google Scholar

    [13]

    Albertazzi B, Ciardi A, Nakatsutsumi M, et al. 2014 Science 346 325Google Scholar

    [14]

    Behera N, Singh R, Kumar A 2015 Phys. Lett. A 379 2215Google Scholar

    [15]

    Ramsey J P, Clarke D A 2019 Mon. Not. R. Astron. Soc. 484 2364Google Scholar

    [16]

    Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, MacNeice P, Rosner R, Truran J, Tufo H 2000 Astrophys. J. Suppl. S. 131 273Google Scholar

    [17]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [18]

    Heltemes T, Moses G 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [19]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [20]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463Google Scholar

    [21]

    Huba J D 2006 Nrl plasma formulary. Tech. rep. Naval Research Lab Washington DC Plasma Physic Div.

    [22]

    Ryutov D, Drake R, Kane J, Liang E, Remington B, Wood-Vasey W 1999 Astrophys. J. 518 821Google Scholar

    [23]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. S. 127 465Google Scholar

    [24]

    Lee C F, Li Z Y, Codella C, Ho P T, Podio L, Hirano N, Shang H, Turner N J, Zhang Q 2018 Astrophys. J. 856 14Google Scholar

    [25]

    Le Gouellec V J, Hull C L, Maury A J, et al. 2019 Astrophys. J. 885 106Google Scholar

    [26]

    Witt A N, Vijh U P, Hobbs L, Aufdenberg J P, Thorburn J A, York D G 2009 Astrophys. J. 693 1946Google Scholar

    [27]

    Vlemmings W 2013 Proc. Int. Astron. Union 9 389

    [28]

    Sahai R, Vlemmings W, Gledhill T, et al. 2017 Astrophys. J. Lett. 835 L13Google Scholar

    [29]

    Shakura N I, Sunyaev R A 1973 Astron. Astrophys. 24 337

    [30]

    Frank A, Gardiner T A, Delemarter G, Lery T, Betti R 1999 Astrophys. J. 524 947Google Scholar

  • 图 1  激光打击固体靶产生等离子体在8 T磁场中的电子密度时间演化, 按三列分别为相对激光上升沿延时5 ns、10 ns、15 ns. 使用的靶材料有(a) PE碳氢靶; (b) Si硅靶; (c) Ta钽靶. 激光沿R = 0轴由上至下入射, 聚焦于柱形靶水平端面中心R = 0, Z = 0处. 初始磁场方向与激光平行, 并均匀充满计算域

    Figure 1.  Electron density evolution of laser-ablated solid target plasma embedded in 8 Tesla of external magnetic field, three rows correspond to 5 ns, 10 ns, 15 ns delay from laser rising edge respectively. Solid target materials are (a) Polyethylene target; (b) silicon target; (c) tantalum target. Laser incident along R = 0 axis from top to the bottom, focus at the center of the flat end surface of target cylinder where R = 0 and Z = 0. Initial field is parallel to the laser direction, and uniformly distributed across the domain.

    图 2  硅等离子外流的纹影成像, 相对激光上升沿延时10 ns. 灰度图计数随当地等离子体密度梯度增加而增加

    Figure 2.  Schlieren image of the silicon plasma outflow, 10 ns delay relative to the rising edge of laser. Gray scale count increase as the local plasma density gradient becomes larger.

    图 3  硅和钽靶等离子体在10 ns延时左右的电子面密度飞秒干涉诊断.

    Figure 3.  Electron area number density of Silicon and Tantalum target around 10 ns delay, obtained by femtosecond interferometry.

    图 4  等离子体外流在5 ns延迟时刻, 对称轴上的纵向流速(+Z为正方向)、电子温度、平均电离度数值, 单幅图含碳氢、硅、钽靶结果

    Figure 4.  Line-out plot of plasma poloidal velocity (positive value along +Z direction), electron density and average ionization along outflow symmetry axis at 5 ns delay, individual values from CH, silicon and tantalum are included.

    图 5  计算域内10 ns时的洛伦兹力(左半伪彩, 数值为负表示指向腔内)、磁力线状态(左半流线)、辐射能量密度(右半伪彩). 靶材依次为(a)碳氢靶; (b)硅靶; (c)钽靶. 虚线标识的是靶等离子体的边界

    Figure 5.  The Lorentz force (pseudocolor image on the left half, negative value indicates force pointing towards inside of the cavity), magnetic field lines (streamlines on the left half) and radiation energy density (pseudocolor image on the right half) status inside the simulation domain at 10 ns. Target materials are (a) Polyethylene; (b) silicon; (c) tantalum respectively. Dashed lines indicate the boundary of target materials.

    图 6  (a)典型原恒星系统HH34的射电观测图像, 大角度外流包裹着准直射流, 射流从核心星近区发出, 延伸至2.0 × 104 au距离消散(原图版权归属于ESO, 本文作者添加注释); (b)拥有点对称双极化腔体的行星状星云M2-9, 内侧椭球腔顶部有增强的发光结构“ansaes”(原图版权归属于ESA/Hubble & NASA, Judy Schmidt, 本文作者添加注释); (c)实验室等离子体从抗磁射流到磁化密度堆积的转变, 部分结构与天体形态有相似性

    Figure 6.  (a) Radio observation of a classical young stellar object HH34, the collimated jet is embedded inside a wide-angle outflow component, the jet originated from the inner region near the central star and extend 2.0 × 104 au of distance before termination (original image by ESO, annotated by author of this article); (b) planetary nebula M2-9 possesses a pair of point-symmetry bi-polar lobe cavities, with bright “ansaes” at the inside tips of the elliptical cavity shells (original image by ESA/Hubble & NASA, Acknowledgement: Judy Schmidt, annotated by author of this article); (c) laboratory plasma transformation from diamagnetic jet to magnetized density clump, structures show similarity with astrophysical objects.

    表 1  实验室等离子体与相关天体外流动力学参数及无量纲参数对比

    Table 1.  Dynamics and dimensionless parameters comparison between laboratory plasma and related astronomical outflows

    参数名称碳氢靶硅靶钽靶YSOPN
    空间尺度/cm0.10.10.1
    特征流速/km·s–1300250100100500
    磁场强度/Gauss8.0 × 1048.0 × 1048.0 × 1040.010.01
    离子密度/cm–32.0 × 10175.0 × 10163.0 × 1017106106
    温度/eV12080200.030.01
    离子拉莫尔半径Li/cm0.010.0060.0051.8 × 1031.0 × 103
    电子碰撞时间τe/s1.0 × 10–106.0 × 10–101.0 × 10–121.6 × 10–43.7 × 10–5
    特征冷却时间τcool/s1.6 × 10–62.8 × 10–79.0 × 10–9
    冷却强度/C470700.9~1 $ \ll 1 $
    磁雷诺数Rm100120.42.244
    Peclet数Pe0.150.961221.0 × 10116.9 × 1014
    DownLoad: CSV
    Baidu
  • [1]

    Bally J 2016 Annu. Rev. Astron. Astrophys. 54 491Google Scholar

    [2]

    Balick B, Frank A 2002 Annu. Rev. Astron. Astrophys. 40 439Google Scholar

    [3]

    Blandford R, Payne D 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [4]

    Spruit H, Foglizzo T, Stehle R 1997 Mon. Not. R. Astron. Soc. 288 333Google Scholar

    [5]

    García-Segura G 1997 Astrophys. J. Lett. 489 L189Google Scholar

    [6]

    García-Segura G, Taam R E, Ricker P M 2020 arXiv preprint arXiv: 2003.06073

    [7]

    Blondin J M, Fryxell B A, Konigl A 1990 Astrophys. J. 360 370Google Scholar

    [8]

    Fendt C, Čemeljić M 2002 Astron. Astrophys. 395 1045Google Scholar

    [9]

    Remington B A, Arnett D, et al. 1999 Science 284 1488Google Scholar

    [10]

    Drake R 1999 J. Geophys. Res. Space Phys. 104 14505Google Scholar

    [11]

    Takabe H 2001 Prog. Theor. Phys. Supp. 143 202Google Scholar

    [12]

    Lebedev S, Chittenden J, Beg F, et al. 2002 Astrophys. J. 564 113Google Scholar

    [13]

    Albertazzi B, Ciardi A, Nakatsutsumi M, et al. 2014 Science 346 325Google Scholar

    [14]

    Behera N, Singh R, Kumar A 2015 Phys. Lett. A 379 2215Google Scholar

    [15]

    Ramsey J P, Clarke D A 2019 Mon. Not. R. Astron. Soc. 484 2364Google Scholar

    [16]

    Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, MacNeice P, Rosner R, Truran J, Tufo H 2000 Astrophys. J. Suppl. S. 131 273Google Scholar

    [17]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [18]

    Heltemes T, Moses G 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [19]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [20]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463Google Scholar

    [21]

    Huba J D 2006 Nrl plasma formulary. Tech. rep. Naval Research Lab Washington DC Plasma Physic Div.

    [22]

    Ryutov D, Drake R, Kane J, Liang E, Remington B, Wood-Vasey W 1999 Astrophys. J. 518 821Google Scholar

    [23]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. S. 127 465Google Scholar

    [24]

    Lee C F, Li Z Y, Codella C, Ho P T, Podio L, Hirano N, Shang H, Turner N J, Zhang Q 2018 Astrophys. J. 856 14Google Scholar

    [25]

    Le Gouellec V J, Hull C L, Maury A J, et al. 2019 Astrophys. J. 885 106Google Scholar

    [26]

    Witt A N, Vijh U P, Hobbs L, Aufdenberg J P, Thorburn J A, York D G 2009 Astrophys. J. 693 1946Google Scholar

    [27]

    Vlemmings W 2013 Proc. Int. Astron. Union 9 389

    [28]

    Sahai R, Vlemmings W, Gledhill T, et al. 2017 Astrophys. J. Lett. 835 L13Google Scholar

    [29]

    Shakura N I, Sunyaev R A 1973 Astron. Astrophys. 24 337

    [30]

    Frank A, Gardiner T A, Delemarter G, Lery T, Betti R 1999 Astrophys. J. 524 947Google Scholar

  • [1] Yin Chao-Nan, Zheng Lai-Yun, Zhang Chao-Nan, Li Xu-Long, Zhao Bing-Xin. Effects of magnetic field, fluid properties, and geometric parameters on double-diffusive convection of liquid metals. Acta Physica Sinica, 2024, 73(11): 114401. doi: 10.7498/aps.73.20240089
    [2] Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team. Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak. Acta Physica Sinica, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [3] Li Shang-Qing, Wang Wei-Min, Li Yu-Tong. Development and application of OpenFOAM based magnetohydrodynamic solver. Acta Physica Sinica, 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [4] Shi Hui-Min, Mo Run-Yang, Wang Cheng-Hui. Oscillation behavior of bubble pair in magnetic fluid tube under magneto-acoustic complex field. Acta Physica Sinica, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [5] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [6] Shi Qi-Chen, Zhao Zhi-Jie, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Mechanism of suppressing Kelvin-Helmholtz instability by flowing magnetic field. Acta Physica Sinica, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [7] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [8] Zhang Yang, Xue Chuang, Ding Ning, Liu Hai-Feng, Song Hai-Feng, Zhang Zhao-Hui, Wang Gui-Lin, Sun Shun-Kai, Ning Cheng, Dai Zi-Huan, Shu Xiao-Jian. One-dimensional magneto-hydrodynamic simulation of the magnetic drive isentropic compression experiments on primary test stand. Acta Physica Sinica, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [9] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [10] Chen Mu-Feng, Li Xiang, Niu Xiao-Dong, Li You, Adnan, Hiroshi Yamaguchi. Sedimentation of two non-magnetic particles in magnetic fluid. Acta Physica Sinica, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [11] Yang Zheng-Quan, Li Cheng, Lei Yi-An. Magnetohydrodynamic simulation of conical plasma compression. Acta Physica Sinica, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [12] Geng Tao, Wu Na, Dong Xiang-Mei, Gao Xiu-Min. Tunable near-zero index of self-assembled photonic crystal using magnetic fluid. Acta Physica Sinica, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [13] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [14] Miao Yin-Ping, Yao Jian-Quan. Temperature sensitivity of microstructured optical fiber filled with ferrofluid. Acta Physica Sinica, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [15] Liu Gui-Xiong, Xu Chen, Zhang Pei-Qiang, Wu Ting-Wan. Magnetomechanical modeling of magnet immersed in magnetic fluid and controllability of self-suspension. Acta Physica Sinica, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [16] Liu Gui-Xiong, Pu Yao-Ping, Xu Chen. Definition of Helmholtz and Kelvin forces in magnetic fluids. Acta Physica Sinica, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [17] Liu Yun, Zhang Xiong, Zheng Yong-Gang, Wang Xiao-Min, Bao Yu-Ying. Polarization and variations of Blazar. Acta Physica Sinica, 2007, 56(9): 5558-5563. doi: 10.7498/aps.56.5558
    [18] Qiao Xiu-Mei, Zhang Guo-Ping, Zhang Tan-Xin. Modeling RAL experiment to test our simulation. Acta Physica Sinica, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
    [19] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [20] JIN ZHAN, ZHANG JIE. STUDY OF ALUMINUM EMISSION SPECTRA IN ASTROPHYSICAL PLASMAS. Acta Physica Sinica, 2001, 50(2): 365-368. doi: 10.7498/aps.50.365
Metrics
  • Abstract views:  5495
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2020
  • Accepted Date:  18 June 2020
  • Available Online:  16 October 2020
  • Published Online:  05 October 2020

/

返回文章
返回
Baidu
map