-
Based on the dynamic model of a single bubble in a magnetic fluid tube, the dynamic equation of a bubble pair system in a magneto-acoustic field is established by introducing the secondary sound radiation between bubbles and considering the magnetic field effect of the viscosity of the magnetic fluid. The effects of magnetic field intensity, bubble pair’s size, bubble interaction (including secondary Bjerknes force FB and magnetic attraction Fm) and fluid characteristics on the vibration characteristics of double bubbles are analyzed. The results show that magnetic field increases the amplitude of bubbles, and the influence of magnetic field on the large bubble is greater than on the small bubble. When the center distance between the two bubbles is constant and the relative size of two bubbles is larger, or when the size of the two bubbles is constant and the surface distance between two bubbles is small, the interaction between two bubbles is stronger. In the magneto-acoustic composite field, magnetic field can affect FB, Fm, magnetic pressure Pm and viscosity resistance, and the influence degrees are different. There is competition between FB and Fm and between Pm and viscosity resistance, and the forces acting on the microbubble jointly affect the movement of the bubbles. By studying the dynamic behavior of paired bubbles, it can provide a theoretical basis for improving the therapeutic effect of targeted regulation of microbubbles on biological tissues by adjusting the magneto-acoustic field in practical application.
-
Keywords:
- bubble pair /
- magnetofluid /
- rigid tube /
- dynamic behavior
[1] Plesset M S, Prosperetti A 1977 Annu. Rev. Fluid Mech. 9 145Google Scholar
[2] Rooze J, Rebrov E V, Schouten J C, Keurentjes J T 2013 Ultrason. Sonochem. 20 1Google Scholar
[3] Maruvada S 2019 J. Acoust. Soc. Am. 146 2870Google Scholar
[4] Brennen C E 2015 Interface. Focus 5 20150022Google Scholar
[5] Dimcevski G, Kotopoulis S, Bjnes T, Hoem D, Schjtt J 2016 J. Control. Release 243 172Google Scholar
[6] Kooiman K, Vos H J, Versluis M, de Jong N 2014 Adv. Drug Deliv. Rev. 72 28Google Scholar
[7] Lentacker I, de Cock I, Deckers R, de Smedt S C 2014 Adv. Drug. Deliv. Rev. 72 49Google Scholar
[8] Sarkar K, Shi W T, Chatterjee D, Forsberg F 2005 J. Acoust. Soc. Am. 118 539Google Scholar
[9] Rajabi M, Mojahed A 2018 Ultrasonics 83 146Google Scholar
[10] Zhang J, Song L, Zhang H, Zhou S 2019 ACS Omega 4 4691Google Scholar
[11] Mobadersany N, Sarkar K 2017 J. Acoust. Soc. Am. 141 3952Google Scholar
[12] De S, Carugo D, Barnsley L C, Owen J, Coussios C C, Stride E 2017 Phys. Med. Biol. 62 7451Google Scholar
[13] Beata C, Robert L 2018 Theranostics 8 341Google Scholar
[14] Vlaskou D, Plank C, Mykhaylyk O 2013 Methods Mol. Biol. 948 205Google Scholar
[15] Saurabh D, Constantin C, Azzdine Y A, Douglas M T 2008 Ultrasound Med. Biol. 34 1421Google Scholar
[16] Teng Z G, Wang R H, Zhou Y, Kolios M 2017 Biomaterials 134 43Google Scholar
[17] Steven J L 2014 Phys. Fluids 26 061901Google Scholar
[18] Holm C Weis J J 2005 Curr. Opin. Colloid Interface Sci. 10 133Google Scholar
[19] Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar
[20] Chen J, Zhao L, Wang C, Mo R 2021 J. Magn. Magn. Mater. 538 168293Google Scholar
[21] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳 2021 70 214303Google Scholar
Shi H M, Hu J, Wang C H, Feng F L, Mo R Y 2021 Acta Phys. Sin. 70 214303Google Scholar
[22] 马艳, 林书玉, 鲜晓军 2016 65 014301Google Scholar
Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301Google Scholar
[23] 王德鑫, 那仁满都拉 2018 67 037802Google Scholar
Wang D X, Na R M D L 2018 Acta Phys. Sin. 67 037802Google Scholar
[24] 李想, 陈勇, 封皓, 綦磊 2020 69 184703Google Scholar
Li X, Chen Y, Feng H, Qi L 2020 Acta Phys. Sin. 69 184703Google Scholar
[25] 蔡晨亮, 屠娟, 郭霞生, 章东 2019 声学技术 44 772Google Scholar
Chen C L, Tu J, Guo X S, Zhang D 2019 Acta. Acustica 44 772Google Scholar
[26] Mukundakrishnan K, Quan S, Eckmann D M, Ayyaswamy P S 2007 Phys. Rev. E 76 036308Google Scholar
[27] Howison D 1986 Proc. Roy. Soc. Edinburgh, Sect. A: Math. 102 141Google Scholar
[28] Corapcioglu M Y, Cihan A, Drazenovic M 2004 Water Resour. Res. 40 W04214Google Scholar
[29] Guet S, Ooms G 2006 Annu. Rev. Fluid Mech. 38 225Google Scholar
[30] Yang Z L, Dinh T N, Nourgaliev R R, Sehgal B R 2000 Int. J. Therm. Sci. 39 1Google Scholar
[31] Kantarci N, Borak F, Ulgen K O 2005 Process Biochem. 40 2263Google Scholar
[32] Gui Y, Shan C, Zhao J, Wu J 2020 AIP Advances 10 105210Google Scholar
[33] Senapati A, Singh G, Lakkaraju R 2019 Chem. Eng. Sci. 208 115159Google Scholar
[34] 王成会, 程建春 2013 中国科学: 物理学 力学 天文学 43 230Google Scholar
Wang C H, Cheng J C 2013 Scientia Sinica Physica, Mechanica & Astronomica 43 230Google Scholar
[35] Liu B, Cai J, Tao Y, Huai Xi 2017 J. Therm. Sc. 26 66Google Scholar
[36] Kang K H, Kang I S, Lee C M 2002 Phys. Fluids 14 29Google Scholar
[37] Ishimoto J, Okubo M, Kamiyama S, Higashitani M 1995 JSME Int. J. 38 382Google Scholar
[38] Wakayama N I, Qi J W, Yabe A 1999 Proc. SPIE-Int. Soc. Opt. Eng. 3792 48Google Scholar
[39] Doinikov A A, Bouakaz A 2014 J. Fluid Mech. 742 425Google Scholar
[40] Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W B 1997 Phys. Rev. E 56 2924Google Scholar
[41] Rigoni C, Fresnais J, Talbot D, Massart R, Perzynski R, Bacri J C, Abou-Hassan A 2020 Langmuir 36 5048Google Scholar
[42] Bekovic M, Hamler A 2010 IEEE T. Magn. 46 552Google Scholar
[43] Sharman S, Singh U, Katiyar V K 2015 J. Magn. Magn. Mater. 377 395Google Scholar
[44] STRIDE E 2008 Phil. Trans. R. Soc. A 366 2103Google Scholar
[45] Cunha F R, Sousa A J, Morais P C 2002 J. Magn. Magn. Mater. 252 271Google Scholar
[46] Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar
[47] Lee W K, Scardovelli R, Trubatch A D, Yecko P 2010 Phys. Rev. E 82 016302Google Scholar
-
-
[1] Plesset M S, Prosperetti A 1977 Annu. Rev. Fluid Mech. 9 145Google Scholar
[2] Rooze J, Rebrov E V, Schouten J C, Keurentjes J T 2013 Ultrason. Sonochem. 20 1Google Scholar
[3] Maruvada S 2019 J. Acoust. Soc. Am. 146 2870Google Scholar
[4] Brennen C E 2015 Interface. Focus 5 20150022Google Scholar
[5] Dimcevski G, Kotopoulis S, Bjnes T, Hoem D, Schjtt J 2016 J. Control. Release 243 172Google Scholar
[6] Kooiman K, Vos H J, Versluis M, de Jong N 2014 Adv. Drug Deliv. Rev. 72 28Google Scholar
[7] Lentacker I, de Cock I, Deckers R, de Smedt S C 2014 Adv. Drug. Deliv. Rev. 72 49Google Scholar
[8] Sarkar K, Shi W T, Chatterjee D, Forsberg F 2005 J. Acoust. Soc. Am. 118 539Google Scholar
[9] Rajabi M, Mojahed A 2018 Ultrasonics 83 146Google Scholar
[10] Zhang J, Song L, Zhang H, Zhou S 2019 ACS Omega 4 4691Google Scholar
[11] Mobadersany N, Sarkar K 2017 J. Acoust. Soc. Am. 141 3952Google Scholar
[12] De S, Carugo D, Barnsley L C, Owen J, Coussios C C, Stride E 2017 Phys. Med. Biol. 62 7451Google Scholar
[13] Beata C, Robert L 2018 Theranostics 8 341Google Scholar
[14] Vlaskou D, Plank C, Mykhaylyk O 2013 Methods Mol. Biol. 948 205Google Scholar
[15] Saurabh D, Constantin C, Azzdine Y A, Douglas M T 2008 Ultrasound Med. Biol. 34 1421Google Scholar
[16] Teng Z G, Wang R H, Zhou Y, Kolios M 2017 Biomaterials 134 43Google Scholar
[17] Steven J L 2014 Phys. Fluids 26 061901Google Scholar
[18] Holm C Weis J J 2005 Curr. Opin. Colloid Interface Sci. 10 133Google Scholar
[19] Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar
[20] Chen J, Zhao L, Wang C, Mo R 2021 J. Magn. Magn. Mater. 538 168293Google Scholar
[21] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳 2021 70 214303Google Scholar
Shi H M, Hu J, Wang C H, Feng F L, Mo R Y 2021 Acta Phys. Sin. 70 214303Google Scholar
[22] 马艳, 林书玉, 鲜晓军 2016 65 014301Google Scholar
Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301Google Scholar
[23] 王德鑫, 那仁满都拉 2018 67 037802Google Scholar
Wang D X, Na R M D L 2018 Acta Phys. Sin. 67 037802Google Scholar
[24] 李想, 陈勇, 封皓, 綦磊 2020 69 184703Google Scholar
Li X, Chen Y, Feng H, Qi L 2020 Acta Phys. Sin. 69 184703Google Scholar
[25] 蔡晨亮, 屠娟, 郭霞生, 章东 2019 声学技术 44 772Google Scholar
Chen C L, Tu J, Guo X S, Zhang D 2019 Acta. Acustica 44 772Google Scholar
[26] Mukundakrishnan K, Quan S, Eckmann D M, Ayyaswamy P S 2007 Phys. Rev. E 76 036308Google Scholar
[27] Howison D 1986 Proc. Roy. Soc. Edinburgh, Sect. A: Math. 102 141Google Scholar
[28] Corapcioglu M Y, Cihan A, Drazenovic M 2004 Water Resour. Res. 40 W04214Google Scholar
[29] Guet S, Ooms G 2006 Annu. Rev. Fluid Mech. 38 225Google Scholar
[30] Yang Z L, Dinh T N, Nourgaliev R R, Sehgal B R 2000 Int. J. Therm. Sci. 39 1Google Scholar
[31] Kantarci N, Borak F, Ulgen K O 2005 Process Biochem. 40 2263Google Scholar
[32] Gui Y, Shan C, Zhao J, Wu J 2020 AIP Advances 10 105210Google Scholar
[33] Senapati A, Singh G, Lakkaraju R 2019 Chem. Eng. Sci. 208 115159Google Scholar
[34] 王成会, 程建春 2013 中国科学: 物理学 力学 天文学 43 230Google Scholar
Wang C H, Cheng J C 2013 Scientia Sinica Physica, Mechanica & Astronomica 43 230Google Scholar
[35] Liu B, Cai J, Tao Y, Huai Xi 2017 J. Therm. Sc. 26 66Google Scholar
[36] Kang K H, Kang I S, Lee C M 2002 Phys. Fluids 14 29Google Scholar
[37] Ishimoto J, Okubo M, Kamiyama S, Higashitani M 1995 JSME Int. J. 38 382Google Scholar
[38] Wakayama N I, Qi J W, Yabe A 1999 Proc. SPIE-Int. Soc. Opt. Eng. 3792 48Google Scholar
[39] Doinikov A A, Bouakaz A 2014 J. Fluid Mech. 742 425Google Scholar
[40] Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W B 1997 Phys. Rev. E 56 2924Google Scholar
[41] Rigoni C, Fresnais J, Talbot D, Massart R, Perzynski R, Bacri J C, Abou-Hassan A 2020 Langmuir 36 5048Google Scholar
[42] Bekovic M, Hamler A 2010 IEEE T. Magn. 46 552Google Scholar
[43] Sharman S, Singh U, Katiyar V K 2015 J. Magn. Magn. Mater. 377 395Google Scholar
[44] STRIDE E 2008 Phil. Trans. R. Soc. A 366 2103Google Scholar
[45] Cunha F R, Sousa A J, Morais P C 2002 J. Magn. Magn. Mater. 252 271Google Scholar
[46] Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar
[47] Lee W K, Scardovelli R, Trubatch A D, Yecko P 2010 Phys. Rev. E 82 016302Google Scholar
Catalog
Metrics
- Abstract views: 3677
- PDF Downloads: 53
- Cited By: 0