搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OpenFOAM的磁流体求解器的开发和应用

李尚卿 王伟民 李玉同

引用本文:
Citation:

基于OpenFOAM的磁流体求解器的开发和应用

李尚卿, 王伟民, 李玉同

Development and application of OpenFOAM based magnetohydrodynamic solver

Li Shang-Qing, Wang Wei-Min, Li Yu-Tong
PDF
HTML
导出引用
  • 基于计算流体力学平台OpenFOAM, 本文开发了一套可压缩磁流体求解器, 并将其应用于二维和三维的跨音速束流模拟. 该求解器对OpenFOAM自带的密度基中心差分黎曼求解器rhoCentralFoam进行了修改, 植入一个隐式压力分离算法用以控制磁场散度误差并保证模拟结果的数值精度. 本文对此求解器进行了检测, 证明了它的收敛阶在1—2之间, 并将其应用到强激光等离子体的磁流体模拟. 利用该求解器, 本文讨论了外加均匀轴向磁场对激光等离子体喷流的影响, 发现了喷嘴和结节位置与热压比开方之间的线性关系. 本文还分析了电容线圈中产生的非均匀磁场对激光等离子体喷流的影响. 初步模拟结果表明, 当线圈中心磁场相同时, 小尺寸线圈产生的磁场会加快喷嘴和结节的形成, 等效的均匀轴向磁场更大. 此模拟结果可以作为我们将来的磁化喷流实验的参考. 同时, 这样物理结果表明该磁流体求解器适合做面向激光等离子体实验的工程计算, 可以应对构型比较复杂的场合.
    We develop a compressible magnetohydrodynamic solver to simulate the transonic flows based on an open-source computational fluid dynamics platform OpenFOAM. The solver is achieved by modifying the density-based Riemann solver rhoCentralFoam which adopts a central scheme and is available in OpenFOAM. To improve simulation accuracy and avoid non-physical oscillations, a specialized pressure-implicit algorithm with the splitting of operators is implemented to guarantee the incompressibility of magnetic field. The solver is benchmarked and the convergence rate is between the first and the second order. After benchmark, we apply this solver to magnetohydrodynamic simulations of intense-laser-produced plasma. The influences of uniform axial magnetic field and nonuniform coil-current-induced magnetic field on laser-produced plasma jets are investigated. With the uniform axial magnetic field, the positions of nozzle and the distance between knots are linearly related to square root of thermal over magnetic pressure. With the nonuniform magnetic field generated in the coil, knots are nonlinearly distributed in space and the nozzle position is modulated according to preliminary simulations. In the two kinds of magnetic fields, when the B-field strength is the same at coil center, the magnetic field of relatively small coils can shorten the times of forming nozzles and knots, suggesting that the coil magnetic field is equivalent to a higher uniform one. The simulations can be used as a reference for our future experiment on magnetized laser-produced plasma jet. Meanwhile, our simulation investigation shows that this magnetohydrodynamic solver is suitable for engineering calculation for laser plasma experiments and can deal with the situation with relatively complex configurations.
      通信作者: 王伟民, weiminwang1@ruc.edu.cn ; 李玉同, ytli@iphy.ac.cn
    • 基金项目: 中国科学院先导科技专项(批准号: XDA25010300, XDA25050300)和国家自然科学基金(批准号: 11827807, 11775302)资助的课题.
      Corresponding author: Wang Wei-Min, weiminwang1@ruc.edu.cn ; Li Yu-Tong, ytli@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25010300, XDA25050300) and the National Natural Science Foundation of China (Grant Nos. 11827807, 11775302)
    [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar

    [4]

    Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar

    [5]

    Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar

    [6]

    Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar

    [7]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [8]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [9]

    Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar

    [10]

    Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar

    [11]

    Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar

    [12]

    Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar

    [13]

    Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar

    [14]

    Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar

    [15]

    Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar

    [16]

    Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar

    [17]

    Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010

    [18]

    Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar

    [19]

    Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar

    [20]

    Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar

    [21]

    Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar

    [22]

    Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar

    [23]

    Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar

    [24]

    Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar

    [25]

    FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]

    [26]

    Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar

    [27]

    Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar

    [28]

    Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar

    [29]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar

    [30]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

  • 图 1  MHDFoam求解器的更新算法示意图

    Fig. 1.  Chart flow of update algorithm in the MHDFoam solver.

    图 2  奥萨格-唐磁流体涡旋的(a)初始速度场和(b)初始磁场

    Fig. 2.  Initialization of speed field (a) and magnetic field (b) in Orszag-Tang MHD vortex.

    图 3  t = 0.5时奥萨格-唐磁流体涡旋的模拟结果 (a), (c) y = 0.25处密度和磁场比较; (b), (d) 密度和磁场廓线

    Fig. 3.  Simulation results of Orszag-Tang MHD vortex at t = 0.5: (a), (c) 1D cut comparisons of density and B-field at y = 0.25; (b), (d) density and B-field contours.

    图 4  磁流体转子 (a) 初始密度廓线; (b), (c) t = 0.15时密度和磁场廓线; (d) t = 0.15时x = 0处磁场比较

    Fig. 4.  MHD rotor: (a) Initial density contours; (b), (c) density and magnetic field contours at t = 0.15; (c) 1D cut comparisons of B-field at x = 0 at t = 0.15.

    图 5  t = 0.15时MHDFoam求解磁流体转子问题的磁场散度误差

    Fig. 5.  Divergence of magnetic fields using the MHDFoam solver at t = 0.15 for the MHD rotor problem.

    图 6  二维模拟配置

    Fig. 6.  Setup for 2D simulation.

    图 7  t = 22 ns时均匀磁场下的密度廓线

    Fig. 7.  Density contours at uniform magnetic fields at t = 22 ns

    图 8  (a) t = 22 ns时轴线密度分布; (b), (c)参数LS$ \beta_{\rm o}^{1/2} $关系

    Fig. 8.  (a) Density distributions at axis at t = 22 ns; (b), (c) parameter L and S as a function of $ \beta_{\rm o}^{1/2} $

    图 9  线圈电流磁场 (a) xz平面二维分布; (b) x = 0处分布; (c) z = 0处分布

    Fig. 9.  Magnetic field of coil currents: (a) 2D distributions in the xz-plane; (b) 1D cut at x = 0; (c) 1D cut at z = 0.

    图 10  t = 22 ns时图9配置的非均匀磁场条件下的密度廓线及与均匀磁场的比对

    Fig. 10.  Density contours at nonuniform magnetic fields set in Fig. 9 at t = 22 ns compared with uniform magnetic fields.

    图 11  t = 22 ns时模拟结果 (a)轴线密度分布; (b)无量纲参数S/DIa相平面上的分布

    Fig. 11.  Simulation results at t = 22 ns: (a) Density distributions at axis; (b) dimensionless parameter S/D in the Ia-plane.

    表 1  奥萨格-唐问题的相对误差和收敛阶数

    Table 1.  Relative errors (δN) and convergence order (RN) for Orszag-Tang problem.

    NMHDFoamKT-MHD[19]
    δNRNδNRN
    500.15005 0.30370
    1000.080240.900.163830.89
    2000.035541.170.080651.02
    3000.020621.340.046041.38
    4000.013931.360.028751.49
    下载: 导出CSV

    表 2  图10模拟结果的等效参数

    Table 2.  Equivalent parameters of simulation results in Fig. 10.

    非均匀线圈磁场构型等效参数
    Be/Tλe/mm
    构型(1) ($I = 0.5{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 104.7{\text{ T}}$)~ 95~ 5
    构型(2) ($I = 0.25{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$)~ 53~ 6.5
    构型(3) ($I = 0.15{\text{ MA}}$, $a = 1.8{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$)~ 95~ 6
    下载: 导出CSV
    Baidu
  • [1]

    Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar

    [2]

    Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar

    [3]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar

    [4]

    Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar

    [5]

    Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar

    [6]

    Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar

    [7]

    Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar

    [8]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar

    [9]

    Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar

    [10]

    Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar

    [11]

    Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar

    [12]

    Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar

    [13]

    Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar

    [14]

    Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar

    [15]

    Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar

    [16]

    Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar

    [17]

    Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010

    [18]

    Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar

    [19]

    Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar

    [20]

    Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar

    [21]

    Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar

    [22]

    Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar

    [23]

    Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar

    [24]

    Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar

    [25]

    FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]

    [26]

    Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar

    [27]

    Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar

    [28]

    Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar

    [29]

    Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar

    [30]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar

  • [1] 浦实, 黄旭光. 相对论自旋流体力学.  , 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 章征伟, 王贵林, 张绍龙, 孙奇志, 刘伟, 赵小明, 贾月松, 谢卫平. 电作用量在磁驱动固体套筒内爆设计分析中的应用.  , 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [3] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流.  , 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国. FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟.  , 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [6] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟.  , 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [7] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型.  , 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测.  , 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟.  , 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟.  , 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [11] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述.  , 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [12] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究.  , 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [13] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟.  , 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [14] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型.  , 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学.  , 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型.  , 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [17] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响.  , 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟.  , 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波.  , 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] 陈仁. 关于磁流体力学激波中的开闸激震与关闸激震是否存在的问题.  , 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
计量
  • 文章访问数:  5930
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-23
  • 上网日期:  2022-05-27
  • 刊出日期:  2022-06-05

/

返回文章
返回
Baidu
map