-
We develop a compressible magnetohydrodynamic solver to simulate the transonic flows based on an open-source computational fluid dynamics platform OpenFOAM. The solver is achieved by modifying the density-based Riemann solver rhoCentralFoam which adopts a central scheme and is available in OpenFOAM. To improve simulation accuracy and avoid non-physical oscillations, a specialized pressure-implicit algorithm with the splitting of operators is implemented to guarantee the incompressibility of magnetic field. The solver is benchmarked and the convergence rate is between the first and the second order. After benchmark, we apply this solver to magnetohydrodynamic simulations of intense-laser-produced plasma. The influences of uniform axial magnetic field and nonuniform coil-current-induced magnetic field on laser-produced plasma jets are investigated. With the uniform axial magnetic field, the positions of nozzle and the distance between knots are linearly related to square root of thermal over magnetic pressure. With the nonuniform magnetic field generated in the coil, knots are nonlinearly distributed in space and the nozzle position is modulated according to preliminary simulations. In the two kinds of magnetic fields, when the B-field strength is the same at coil center, the magnetic field of relatively small coils can shorten the times of forming nozzles and knots, suggesting that the coil magnetic field is equivalent to a higher uniform one. The simulations can be used as a reference for our future experiment on magnetized laser-produced plasma jet. Meanwhile, our simulation investigation shows that this magnetohydrodynamic solver is suitable for engineering calculation for laser plasma experiments and can deal with the situation with relatively complex configurations.
-
Keywords:
- compressible magnetohydrodynamic solver /
- computational fluid dynamics /
- OpenFOAM code /
- intense-laser-produced plasma /
- magnetohydrodynamic simulation
[1] Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar
[2] Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar
[3] Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar
[4] Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar
[5] Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar
[6] Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar
[7] Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar
[8] Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar
[9] Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar
[10] Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar
[11] Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar
[12] Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar
[13] Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar
[14] Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar
[15] Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar
[16] Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar
[17] Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010
[18] Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar
[19] Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar
[20] Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar
[21] Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar
[22] Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar
[23] Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar
[24] Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar
[25] FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]
[26] Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar
[27] Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar
[28] Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar
[29] Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar
[30] Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar
-
表 1 奥萨格-唐问题的相对误差和收敛阶数
Table 1. Relative errors (δN) and convergence order (RN) for Orszag-Tang problem.
N MHDFoam KT-MHD[19] δN RN δN RN 50 0.15005 — 0.30370 — 100 0.08024 0.90 0.16383 0.89 200 0.03554 1.17 0.08065 1.02 300 0.02062 1.34 0.04604 1.38 400 0.01393 1.36 0.02875 1.49 非均匀线圈磁场构型 等效参数 Be/T λe/mm 构型(1) ($I = 0.5{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 104.7{\text{ T}}$) ~ 95 ~ 5 构型(2) ($I = 0.25{\text{ MA}}$, $a = 3.0{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$) ~ 53 ~ 6.5 构型(3) ($I = 0.15{\text{ MA}}$, $a = 1.8{\text{ mm}}$, ${B_{\text{o}}} = 52.4{\text{ T}}$) ~ 95 ~ 6 -
[1] Gotchev O V, Chang P Y, Knauer J P, Meyerhofer D D, Polomarov O, Frenje J, Li C K, Manuel M J, Petrasso R D, Rygg J R, Seguin F H, Betti R 2009 Phys. Rev. Lett. 103 215004Google Scholar
[2] Chang P Y, Fiksel G, Hohenberger M, Knauer J P, Betti R, Marshall F J, Meyerhofer D D, Seguin F H, Petrasso R D 2011 Phys. Rev. Lett. 107 035006Google Scholar
[3] Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pepin H, Portugall O 2013 Phys. Rev. Lett. 110 025002Google Scholar
[4] Higginson D P, Khiar B, Revet G, Beard J, Blecher M, Borghesi M, Burdonov K, Chen S N, Filippov E, Khaghani D, Naughton K, Pepin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev S N, Skobelev I Y, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, Fuchs J 2017 Phys. Rev. Lett. 119 255002Google Scholar
[5] Revet G, Khiar B, Filippov E, Argiroffi C, Beard J, Bonito R, Cerchez M, Chen S N, Gangolf T, Higginson D P, Mignone A, Olmi B, Ouille M, Ryazantsev S N, Skobelev I Y, Safronova M I, Starodubtsev M, Vinci T, Willi O, Pikuz S, Orlando S, Ciardi A, Fuchs J 2021 Nat. commun. 12 762Google Scholar
[6] Muranaka T, Uchimura H, Nakashima H, Zakharov Y P, Nikitin S A, Ponomarenko A G 2001 Jpn. J. Appl. Phys. 40 824Google Scholar
[7] Plechaty C, Presura R, Esaulov A A 2013 Phys. Rev. Lett. 111 185002Google Scholar
[8] Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325Google Scholar
[9] Ivanov V V, Maximov A V, Betti R, Wiewior P P, Hakel P, Sherrill M E 2017 Plasma Phys. Contr. F. 59 085008Google Scholar
[10] Dubey A, Antypas K, Ganapathy M K, Reid L B, Riley K, Sheeler D, Siegel A, Weide K 2009 Parallel Comput. 35 512Google Scholar
[11] Ciardi A, Lebedev S V, Frank A, Blackman E G, Chittenden J P, Jennings C J, Ampleford D J, Bland S N, Bott S C, Rapley J, Hall G N, Suzuki-Vidal F A, Marocchino A, Lery T, Stehle C 2007 Phys. Plasmas 14 056501Google Scholar
[12] Seyler C E, Martin M R 2011 Phys. Plasmas 18 012703Google Scholar
[13] Ryutov D D 2010 Astrophys. Space Sci. 336 21Google Scholar
[14] Kostyukov I Y, Ryzhkov S V 2011 Plasma Phys. Rep. 37 1092Google Scholar
[15] Weller H G, Tabor G, Jasak H, Fureby C 1998 Comput. Phys. 12 620Google Scholar
[16] Singh R J, Gohil T B 2019 Int. J. Therm. Sci. 146 106096Google Scholar
[17] Xisto C, Páscoa J, Oliveira P, Nicolini D 2010 European Conference on Computational Fluid Dynamics Lisbon, Portugal, June 14–17, 2010
[18] Ryakhovskiy A I, Schmidt A A 2017 J. Phys. Conf. Ser. 929 012098Google Scholar
[19] Chelem Mayigué C, Groll R 2016 Arch. Appl. Mech. 87 667Google Scholar
[20] Kurganov A, Noelle S, Petrova G 2001 SIAM J. Sci. Comput. 23 707Google Scholar
[21] Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 241Google Scholar
[22] Kühn C, Groll R 2021 Comput. Phys. Commun. 262 107853Google Scholar
[23] Brackbill J U, Barnes D C 1980 J. Comput. Phys. 35 426Google Scholar
[24] Orszag S A, Tang C-M 1979 J. Fluid Mech. 90 129Google Scholar
[25] FLASH User’s Guide Version 4.5, flash. uchicago. edu/ site/publications/flash_pubs. shtml [2017-12-18]
[26] Ziegler U 2008 Comput. Phys. Commun. 179 227Google Scholar
[27] Fogang F, Tchuen G, Burtschell Y, Woafo P 2015 Comput. Fluids 114 297Google Scholar
[28] Balsara D S, Spicer D S 1999 J. Comput. Phys. 153 671Google Scholar
[29] Lei Z, Zhao Z H, Yao W P, Xie Y, Jiao J L, Zhou C T, Zhu S P, He X T, Qiao B 2020 Plasma Phys. Contr. F. 62 095020Google Scholar
[30] Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170Google Scholar
-
补充材料20212432.pdf
Catalog
Metrics
- Abstract views: 5932
- PDF Downloads: 169
- Cited By: 0