Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak

Xu Ming Xu Li-Qing Zhao Hai-Lin Li Ying-Ying Zhong Guo-Qiang Hao Bao-Long Ma Rui-Rui Chen Wei Liu Hai-Qing Xu Guo-Sheng Hu Jian-Sheng Wan Bao-Nian the EAST Team

Citation:

Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak

Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team
PDF
HTML
Get Citation
  • Establishment and sustainment of the structure of internal transport barriers (ITBs) is an important guarantee for the magnetic fusion plasma. The related physics processes for the establishing and sustaining of ITBs with $q_{{\rm{min}}} \approx 2$ are simply summarized as follows: the “off-axis sawteeth” (OAS) mode instability and double tearing mode (DTM) instability, fast ions induced Alfvén eigenmode instability, thermal pressure gradient induced low-frequency modes (LFMs) instability, etc. Firstly, the burst of OAS is an important criterion for evaluating reversed q-profile with $q_{{\rm{min}}} \approx 2$. The excitation conditions, classifications and the structures of precursor modes of OAS are given in detail, and the collapse event is triggered off by the magnetic reconnection of m/n = 2/1 DTM. Secondly, the beta-induced Alfvén eigenmode and reversed shear Alfvén eigenmode are easily excited by the fast ions during the oscillation of OAS. The toroidal mode numbers of the two kinds of Alfvén waves are $1 \leqslant n \leqslant 5$, respectively, which are located at $1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ with normalized minor radius $0.2 \leqslant \rho \leqslant 0.45$. The excitation conditions are investigated for the condition of $q_{{\rm{min}}} \approx 2$, and three different physical variables, i.e. thermal pressure gradient, fast ions distribution function, and the toroidal flow or flow shear are considered. Thirdly, the LFMs instabilities are excited by the pressure gradient during the oscillation of OAS. The general fishbone-like dispersion relationship (GFLDR) is adopted for solving the basic features of LFMs: 1) the frequency of LFMs scales with ion diamagnetic frequency; 2) the LFMs has the Alfvén polarization direction; 3) the LFMs are a reactive-type kinetic ballooning mode. The excitation of LFMs does not depend on the fast ions, which is taken place in a higher pressure gradient regime $\alpha \propto (1 + \tau) $$ (1 + \eta_{\rm{i}})$, $\tau = T_{\rm{e}}/T_{\rm{i}}$, $\eta_{\rm{i}} = L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$. In the end, the suppression of OAS and establishment of ITBs are achieved. Three important processes appear under the condition of $q_{{\rm{min}}} \approx 2$ in EAST: 1) the tangential injection (NBI1L) of NBI is easier for the suppression of OAS than the perpendicular injection (NBI1R); 2) the micro-instability can be suppressed during the oscillation of OAS, and the reversed shear q-profile is more favorable in the establishment of the structure of ITBs; 3) the establishment of ITBs is accompanied by the excitation of Alfvén wave instability (bigger toroidal mode number: $1 \leqslant n \leqslant 5$), the sustainment of ITBs is accompanied by the thermal ion temperature gradient induced instability (median size: $5 \leqslant n \leqslant 10$). Therefore, for the establishment of ITBs, it is important to understand the establishment and suppression of OAS, the excitation of Alfvén wave instability and the redistributed fast ions, and the related instability of thermal pressure gradient.
      Corresponding author: Xu Ming, mxu@ipp.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFE03020000, 2018YFE0304100) and the National Natural Science Foundation of China (Grant Nos. 12175271, 11975267).
    [1]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [2]

    Connor J W, Fukuda T, Garbet X, et al. 2004 Nuclear Fusion 44 R1Google Scholar

    [3]

    Wolf R C 2003 Plasma Phys. Control. Fusion 45 R1Google Scholar

    [4]

    Mazzi S, Garcia J, Zarzoso D, et al. 2022 Nat. Phys. 18 776Google Scholar

    [5]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [6]

    Di Siena A, Bilato R, Görler T, et al. 2021 Phys. Rev. Lett. 127 025002Google Scholar

    [7]

    Koide Y, Kikuchi M, Mori M, Tsuji S, Ishida S, Asakura N, Kamada Y, Nishitani T, Kawano Y, Hatae T, Fujita T, Fukuda T, Sakasai A, Kondoh T, Yoshino R, Neyatani Y 1994 Phys. Rev. Lett. 72 3662Google Scholar

    [8]

    Levinton F M, Zarnstorff M C, Batha S H, Bell M, Bell R E, Budny R V, Bush C, Chang Z, Fredrickson E, Janos A, Manickam J, Ramsey A, Sabbagh S A, Schmidt G L, Synakowski E J, Taylor G 1995 Phys. Rev. Lett. 75 4417Google Scholar

    [9]

    Synakowski E J, Batha S H, Beer M A, Bell M G, Bell R E, Budny R V, Bush C E, Efthimion P C, Hammett G W, Hahm T S, LeBlanc B, Levinton F, Mazzucato E, Park H, Ramsey A T, Rewoldt G, Scott S D, Schmidt G, Tang W M, Taylor G, Zarnstorff M C 1997 Phys. Rev. Lett. 78 2972Google Scholar

    [10]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff M C 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [11]

    Strait E J, Lao L L, Mauel M E, Rice B W, Taylor T S, Burrell K H, Chu M S, Lazarus E A, Osborne T H, Thompson S J, Turnbull A D 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [12]

    Conway G D, Borba D N, Alper B, Bartlett D V, Gormezano C, von Hellermann M G, Maas A C, Parail V V, Smeulders P, Zastrow K D 2000 Phys. Rev. Lett. 84 1463Google Scholar

    [13]

    Crisanti F, Litaudon X, Mailloux J, et al. 2002 Phys. Rev. Lett. 88 145004Google Scholar

    [14]

    Rice J E, Boivin R L, Bonoli P T, Goetz J A, Granetz R S, Greenwald M J, Hutchinson I H, Marmar E S, Schilling G, Snipes J A, Wolfe S M, Wukitch S J, Fiore C L, Irby J H, Mossessian D, Porkolab M 2001 Nuclear Fusion 41 277Google Scholar

    [15]

    Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553Google Scholar

    [16]

    Xu M, Hu L, Zhou T, Zhang L, Xu L, Duan Y, Zang Q, Liu H, Gong X, Xu G, EAST Team 2021 Nuclear Fusion 61 106008Google Scholar

    [17]

    Xu M, Zhao H L, Zang Q, Zhong G Q, Xu L Q, Liu H Q, Chen W, Huang J, Hu L Q, Xu G S, Gong X Z, Qian J P, Liu Y, Zhang T, Zhang Y, Sun Y W, Zhang X D, Wan B N 2019 Nuclear Fusion 59 084005Google Scholar

    [18]

    Xu M, Zhao H, Zhang J, Xu L, Liu H, Li G, Zhong G, Zang Q, Hu L, Gong X, Xu G, Zhang X, Wan B, EAST Team 2020 Nuclear Fusion 60 112005Google Scholar

    [19]

    Xu M, Ma R, Xu L, Li Y, Zhao H, Chen W, Wang S, Li G, Zhong G, Wang F, Jin Y, Huang J, Zang Q, Liu H, Hu L, Gong X, Xu G, Hu J, Wan B, EAST Team 2022 Nuclear Fusion 62 126041Google Scholar

    [20]

    Gorelenkov N N, Berk H L, Fredrickson E, Sharapov S E, Contributors J E 2007 Phys. Lett. A 370 70Google Scholar

    [21]

    Gorelenkov N N, Berk H L, Crocker N A, Fredrickson E D, Kaye S, Kubota S, Park H, Peebles W, Sabbagh S A, Sharapov S E, Stutmat D, Tritz K, Levinton F M, Yuh H, Team T N, Contributors J E 2007 Plasma Phys. Control. Fusion 49 B371Google Scholar

    [22]

    Heidbrink W W, Van Zeeland M A, Austin M E, Bierwage A, Chen L, Choi G J, Lauber P, Lin Z, McKee G R, Spong D A 2020 Nuclear Fusion 61 016029Google Scholar

    [23]

    Ishii Y, Azumi M, Kishimoto Y 2002 Phys. Rev. Lett. 89 205002Google Scholar

    [24]

    Wang Z, Wang X, Dong J, Lei Y, Long Y, Mou Z, Qu W 2007 Phys. Rev. Lett. 99 185004Google Scholar

    [25]

    Janvier M, Kishimoto Y, Li J Q 2011 Phys. Rev. Lett. 107 195001Google Scholar

    [26]

    Wang X, Wang X 2017 Nuclear Fusion 57 016039Google Scholar

    [27]

    Zhang W, Ma Z W, Lu X Q, Zhang H W 2020 Nuclear Fusion 60 126022Google Scholar

    [28]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [29]

    Group I P E 1999 Nuclear Fusion 39 2251Google Scholar

    [30]

    Imbeaux F, Giruzzi G, Maget P, et al. 2006 Phys. Rev. Lett. 96 045004Google Scholar

    [31]

    Maget P, Imbeaux F, Giruzzi G, et al. 2006 Nuclear Fusion 46 797Google Scholar

    [32]

    Maget P, Huysmans G T A, Garbet X, et al. 2007 Phys. Plasmas 14 052509Google Scholar

    [33]

    Wei L, Wang Z X 2014 Phys. Plasmas 21 062505Google Scholar

    [34]

    Wei L, Wang Z X 2014 Nuclear Fusion 54 043015Google Scholar

    [35]

    Zhang W, Ma Z W, Zhu J, Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002Google Scholar

    [36]

    Zhang W, Lin X, Ma Z W, Lu X Q, Zhang H W 2020 Phys. Plasmas 27 122509Google Scholar

    [37]

    Yu Q, Günter S 2022 Nuclear Fusion 62 126056Google Scholar

    [38]

    Kessel C, Manickam J, Rewoldt G, Tang W M 1994 Phys. Rev. Lett. 72 1212Google Scholar

    [39]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D R, Hogeweij G M D, Johnson T, Pueschel M J, Schneider M 2015 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [40]

    Citrin J, Mantica P 2023 Plasma Phys. Control. Fusion 65 033001Google Scholar

    [41]

    Liu P, Wei X, Lin Z, Brochard G, Choi G J, Heidbrink W W, Nicolau J H, McKee G R 2022 Phys. Rev. Lett. 128 185001Google Scholar

    [42]

    Heidbrink W W, Strait E J, Chu M S, Turnbull A D 1993 Phys. Rev. Lett. 71 855Google Scholar

    [43]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [44]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [45]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [46]

    Shi P W, Chen W, Shi Z B, Duan X R, Yang Z C, Ma R R, Zhong W L, Jiang M, Yu L M, Liang A S, Wen J, Yu D L, Liu Y, Yang Q W 2019 Nuclear Fusion 59 066015Google Scholar

    [47]

    Duan S, Fu G Y, Cai H, Li D 2022 Nuclear Fusion 62 056002Google Scholar

    [48]

    Kramer G J, Cheng C Z 2023 Plasma Phys. Control. Fusion 65 015015Google Scholar

    [49]

    Li G, Li Y, Xiao Y 2023 Nuclear Fusion 63 016009Google Scholar

    [50]

    Breizman B N, Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001Google Scholar

    [51]

    Bass E M, Waltz R E 2013 Phys. Plasmas 20 012508Google Scholar

    [52]

    Fasoli A, Testa D, Sharapov S, Berk H L, Breizman B, Gondhalekar A, Heeter R F, Mantsinen M, contributors to the E J W 2002 Plasma Phys. Control. Fusion 44 B159Google Scholar

    [53]

    Chen W, Yu L, Liu Y, Ding X T, Xie H S, Zhu J, Yu L M, Ji X Q, Li J X, Li Y G, Yu D L, Shi Z B, Song X M, Cao J Y, Song S D, Dong Y B, Zhong W L, Jiang M, Cui Z Y, Huang Y, Zhou Y, Dong J Q, Xu M, Xia F, Yan L W, Yang Q W, Duan X R, HL-2A Team 2014 Nuclear Fusion 54 104002Google Scholar

    [54]

    Kramer G J, Gorelenkov N N, Nazikian R, Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23Google Scholar

    [55]

    Xu M, Zhong G, Hao B, Shen W, Hu L, Chen W, Qiu Z, Zhang X, Hu Y, Li Y, Zhao H, Liu H, Lyu B, EAST Team 2021 Chin. Phys. Lett. 38 085201Google Scholar

    [56]

    Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, Thun C P v, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R, Yavorskij V, ITPA EP TG and JET-EFDA Contributors 2013 Nuclear Fusion 53 104022Google Scholar

    [57]

    Qi L, Dong J Q, Bierwage A, Lu G, Sheng Z M 2013 Phys. Plasmas 20 032505Google Scholar

    [58]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N, EAST Team 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [59]

    Chen L, Zonca F 2007 Nuclear Fusion 47 S727Google Scholar

    [60]

    Ma R, Chen L, Zonca F, Li Y, Qiu Z 2022 Plasma Phys. Control. Fusion 64 035019Google Scholar

    [61]

    Ma R, Heidbrink W W, Chen L, Zonca F, Qiu Z 2023 Phys. Plasmas 30 042105Google Scholar

    [62]

    Chavdarovski I, Zonca F 2014 Phys. Plasmas 21 052506Google Scholar

    [63]

    Chen L, Zonca F 2017 Phys. Plasmas 24 072511Google Scholar

    [64]

    Yang Y, Gao X, Liu H Q, Li G Q, Zhang T, Zeng L, Liu Y K, Wu M Q, Kong D F, Ming T F, Han X, Wang Y M, Zang Q, Lyu B, Li Y Y, Duan Y M, Zhong F B, Li K, Xu L Q, Gong X Z, Sun Y W, Qian J P, Ding B J, Liu Z X, Liu F K, Hu C D, Xiang N, Liang Y F, Zhang X D, Wan B N, Li J G, Wan Y X, EAST Team 2017 Plasma Phys. Control. Fusion 59 085003Google Scholar

    [65]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T, Liu Z, Wang Y, Zeng L, Han X, Liu Y, Wu M, Qu H, Shen B, Zang Q, Yu Y, Kong D, Gao W, Zhang L, Cai H, Wu X, Hanada K, Zhong F, Liang Y, Hu C, Liu F, Gong X, Xiao B, Wan B, Zhang X, Li J, EAST Team 2017 Nuclear Fusion 57 056021Google Scholar

    [66]

    Chu Y Q, Liu H Q, Zhang S B, Jie Y X, Lian H, Wu M Q, Zhu X, Wu C B, Xu L Q, Wang Y F, Wang S X, Zhang T, Yang Y, Hanada K, Lyu B, Li Y Y, Zang Q 2021 Plasma Phys. Control. Fusion 63 105003Google Scholar

    [67]

    Han X, Liu Y, Zhou T F, Zhang T, Shi T H, Li Y Y, Yuan Y, Mao S T, Jin Y F, Wu X H, Wang S X, Yang Y, Wen F, Huang J, Liu S C, Ye K X, Wu M F, Geng K N, Li G S, Zhong F B, Xiang H M, Gao X, EAST Team 2022 Nuclear Fusion 62 064005Google Scholar

    [68]

    Liu Z X, Ge W L, Wang F, Liu Y J, Yang Y, Wu M Q, Wang Z X, Zhang X X, Li H, Xie J L, Lan T, Mao W, Liu A D, Zhou C, Ding W X, Zhuang G, Liu W D 2020 Nuclear Fusion 60 122001Google Scholar

    [69]

    Zhang B, Gong X, Qian J, Zeng L, Xu L Q, Duan Y M, Zhang J Y, Hu Y C, Jia T Q, Li P, Liang R R, Wang Z H, Zhu X, Wang S X, Ma Q, Ye L, Huang J, Ding R, EAST Team 2022 Nuclear Fusion 62 126064Google Scholar

    [70]

    Ge W, Wang Z X, Wang F, Liu Z, Xu L 2023 Nuclear Fusion 63 016007Google Scholar

    [71]

    Wang S, Cai H, Chen X, Li D 2023 Plasma Phys. Control. Fusion 65 055018Google Scholar

    [72]

    Wu M, Liu Z, Li G, Han X, Zhang T, Li Y, Zhou T, Chao Y, Wang S, Wu X, Geng K, Xiang H, Zhong F, Ye K, Huang J, Zhou Z, Yang S, Wen F, Wang Y, Zhang S, Zhuang G, Gao X, East Team 2023 Nuclear Fusion 63 016008Google Scholar

    [73]

    Wang J, Wang Z X, Wei L, Liu Y 2017 Nuclear Fusion 57 046007Google Scholar

    [74]

    Brower D L, Peebles W A, Luhmann N C, Savage R L 1985 Phys. Rev. Lett. 54 689Google Scholar

    [75]

    Chen W, Yu D L, Ma R R, Shi P W, Li Y Y, Shi Z B, Du H R, Ji X Q, Jiang M, Yu L M, Yuan B S, Li Y G, Yang Z C, Zhong W L, Qiu Z Y, Ding X T, Dong J Q, Wang Z X, Wei H L, Cao J Y, Song S D, Song X M, Yi L, Yang Q W, Xu M, Duan X R 2018 Nuclear Fusion 58 056004Google Scholar

    [76]

    Du X D, Hong R J, Heidbrink W W, et al. 2021 Phys. Rev. Lett. 127 025001Google Scholar

  • 图 1  EAST托卡马克装置反磁剪切$q_{{\rm{min}}} \leqslant 2$条件下双撕裂模(DTM)和离轴锯齿(OAS)、快离子激发低频阿尔芬波(BAEs, RSAEs)、热压力梯度激发低频模(LFMs)和内部输运垒(ITBs)等物理过程之间的相互关系

    Figure 1.  Sketch of different physics phenomena, namely, Double tearing modes (DTM) and “off-axis” sawteeth (OAS), fast ions induced low-frequency Alfvén waves, thermal pressure gradient induced low-frequency mode (LFM) and internal transport barriers (ITBs) under the condition of $q_{{\rm{min}}} \leqslant 2$ in the EAST tokamak.

    图 2  EAST上离轴锯齿的不同激发条件 (a)—(d) ICRH辅助条件下离轴锯齿和边界局域模共存现象(#62863); (e), (f)提高ECRH功率阈值(#62085)和(g), (h)降低环向磁场$B_\phi$实现离轴ECRH加热(#66465)条件下激发的离轴锯齿现象

    Figure 2.  Several different conditions for the excitation of OAS: (a)–(d) Coexistence of OAS and ELM instabilities during the ICRH (#62863); (e), (f) effect of ECRH with power threshold (#62085); (g), (h) effect of toroidal field $B_\phi$ on the deposition of ECRH (#66465)

    图 3  离轴锯齿可以分为中心(Central)、环形(Annular)和“广义锯齿”崩塌事件三大类 (a) 不同径向$T_{\rm{e}}$信号随时间演化; (b) 中心崩塌事件前后的$T_{\rm{e}}$剖面的变化; (c)—(e)三类崩塌事件发生前后的温度变化量$\Delta T_{\rm{e}}/T_{\rm{e}}$ (磁轴$R_0 \approx 1.9\ {\rm{m}}$)

    Figure 3.  The OAS can be divided into three categories: Central crash, annular crash and “generalized-sawteeth” crash events. (a) $T_{\rm{e}}$ for different radial positions; (b) $T_{\rm{e}}$-profiles before and after the central crash event; (c)–(e) the relative alterations of $\Delta T_{\rm{e}}/T_{\rm{e}}$ for the three cases (magnetic axis: $R_0 \approx 1.9\ {\rm{m}}$)

    图 4  离轴锯齿崩塌前激发m/n = 2/1先兆振荡模(图2 #66465阴影区间放大结果) (a) 不同径向ECE信号; (b) SXR阵列相对扰动信号(${\text{δ}} I_{{\rm{sx}}}/I_{{\rm{sx}}}$)沿着Z方向随时间演化分布图; (c) 边界磁探针频谱图; (d) ECE阵列相对扰动信号(${\text{δ}} T_{\rm{e}}/T_{\rm{e}}$)沿着R方向随时间演化分布图. 说明: 离轴锯齿崩塌前可以观察到两次不同的崩塌事件($t\approx 4.043\ {\rm{s}}$$t\approx 4.05\ {\rm{s}}$)

    Figure 4.  The m/n = 2/1 precursor mode is taken place before the final collapse of OAS: (a) ECE signals of different radial positions; (b) relative fluctuation of ${\text{δ}} I_{{\rm{sx}}}/I_{{\rm{sx}}}$ for SXR array along Z direction; (c) spectrogram of edge magnetic signal; (d) relative fluctuation of ${\text{δ}} T_{\rm{e}}/T_{\rm{e}}$ for the ECE array along R direction. Note: two different collapse events are observed successively ($t\approx 4.043\ {\rm{s}}$ and $t\approx 4.05\ {\rm{s}}$)

    图 5  BAEs和RSAEs的径向位置$1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ (归一化小半径$ 0.2 \leqslant \rho \leqslant 0.45$), $q_{{\rm{min}}}$位置为$R \approx 2.025\ {\rm{m}}$ ($\rho \approx 0.3$)

    Figure 5.  Radial coverage of the pairs of BAEs-RSAEs is located at $1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ (the radial position of $q_{{\rm{min}}}$ should be located at $R \approx 2.025\ {\rm{m}}$).

    图 6  EAST上离轴锯齿振荡期间阿尔芬波不稳定性的激发条件对比 (a) NBI功率; (b) 中子产额$S_{\rm{n}}$; (c) 等离子体储能$W_{{\rm{dia}}}$; (d) 芯部电子温度$T_{{\rm{e}}0}$; (e) 径向$R \approx 2.02\ {\rm{m}}$附近ECE信号功率谱; (f) #60223下ECE信号频谱图

    Figure 6.  Excitation conditions of Alfvén waves during the oscillation of OAS in EAST: (a) Input powers of NBI; (b) neutron yield $S_{\rm{n}}$; (c) plasma stored energy $W_{{\rm{dia}}}$; (d) core electron temperature $T_{{\rm{e}}0}$; (e) power spectra of ECE signal at $R \approx 2.02\ {\rm{m}}$; (f) spectrogram of ECE signal for #60223

    图 7  影响阿尔芬本征模激发的3个相关因素 (a) 温度剖面($T_{\rm{e}}$为点划线; $T_{\rm{i}}$为实线); (b) 温度归一化梯度标长($R/L_{T_{\rm{e}}}$为点划线, $R/L_{T_{\rm{i}}}$为实线); (c) RNC诊断测量的中子计数率空间分布(高能离子密度); (d), (e) NUBEAM/TRANSP代码计算不同NBI束方向下的高能离子的经典分布函数; (f) CXRS诊断测量的环向速度归一化梯度标长($R/L_{v_\phi}$)

    Figure 7.  Three correlated factors for the excitation of Alfvén eigenmodes: (a) Profiles of $T_{\rm{e}}$ and $T_{\rm{i}}$; (b) normalized temperature gradients of $R/L_{T_{\rm{e}}}$ and $R/L_{T_{\rm{i}}}$; (c) counts of neutron flux measured by RNC; (d), (e) classical distribution functions for the two conditions are estimated by the NUBEAM/TRANSP; (f) the normalized gradient of $R/L_{v_\phi}$ measured by CXRS

    图 8  两种不同类型离轴锯齿崩塌前RSAEs向上扫频斜率对比结果

    Figure 8.  Upward sweeping rates of RSAEs different branches before the central/annular collapse events.

    图 9  低频模和阿尔芬本征模之间的共存关系 (a), (b) BAEs-RSAEs和LFMs的频谱图; (c) LFMs和BAEs的共存时间正比于离轴锯齿的振荡周期

    Figure 9.  Coexistence between LFMs and Alfvén eigenmodes: (a), (b) The spectrogram of the pairs of BAEs-RSAEs and LFMs; (c) the coexistence time between LFMs and BAEs versus the OAS period.

    图 10  EAST上LFMs不稳定性激发条件的实验研究 (a) #61960和#61970两炮的功率谱密度; (b), (c)电子和离子温度剖面, 其中低频模的径向位置为黄色阴影区间所示

    Figure 10.  Experimental investigation of the excitation condition of LFMs instability on EAST: (a) Power spectra densities for the two shots #61960 and #61970; (b), (c) profiles of $T_{\rm{e}}$ and $T_{\rm{i}}$, where the radial position of LFMs is demonstrated by the yellow shaded region

    图 11  利用GFLDR代码数值求解EAST上LFMs不稳定性的激发条件和基本特征 (a) LFMs增长率$\gamma$和($\eta_{\rm{i}} = $$ L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$, $\tau = T_{\rm{e}}/T_{\rm{i}}$)之间的依赖关系; (b) LFMs的频率f和增长率$\gamma$; (c) 极化方向$|{\cal{S}}|$$\varOmega_{\ast {\rm{pi}}}\equiv \omega_{\ast {\rm{pi}}}/\omega_{{\rm{ti}}}$之间的关系

    Figure 11.  Excitation conditions and basic features of LFMs are numerically calculated by GFLDR in EAST: (a) Growth rate $\gamma$ of LFMs versus ($\eta_{\rm{i}} = L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$, $\tau = T_{\rm{e}}/T_{\rm{i}}$); (b) mode frequency f and growth rate $\gamma$; (c) polarization $|{\cal{S}}|$ of LFMs on $\varOmega_{\ast {\rm{pi}}}\equiv \omega_{\ast {\rm{pi}}}/\omega_{{\rm{ti}}}$

    图 12  利用不同注入方向的中性束(NBI1R为垂直方向, NBI1L为切向注入)实现离轴锯齿的缓解和抑制 (a)储能$W_{{\rm{dia}}}$; (b) #61962 NBI注入源功率; (c)芯部的旋转速度; (d)芯部电子温度$T_{{\rm{e}}0}$

    Figure 12.  Suppression of OAS by the different injection direction of NBI: (a) Stored energy $W_{{\rm{dia}}}$; (b) source power of NBI in #61962; (c) central rotation velocity $v_{\phi 0}$; (d) central electron temperature $T_{{\rm{e}}0}$

    图 13  离轴锯齿振荡期间微观不稳定性的激发和抑制 (a) POINT诊断不同极向位置测量到的弦平均电子密度$\langle n_{\rm{e}} \rangle$; (b), (c)电子和离子温度的归一化梯度长度$R/L_{T_{\rm{e}}}$$R/L_{T_{\rm{i}}}$; (d), (e)不同环向位置POINT和SXR诊断测量到的相对扰动$\Delta n_{\rm{e}}/n_{\rm{e}}$$\Delta I_{{\rm{sx}}} /I_{{\rm{sx}}}$

    Figure 13.  One kinds of micro-instability is excited and suppressed during the oscillation of OAS: (a) Line-integrated electron densities $\langle n_{\rm{e}} \rangle$ for different chord position of POINT array; (b), (c) normalized gradient of $R/L_{T_{\rm{e}}}$ and $R/L_{T_{\rm{i}}}$; (d), (e) relative fluctuations of $\Delta n_{\rm{e}}/n_{\rm{e}}$ and $\Delta I_{{\rm{sx}}} /I_{{\rm{sx}}}$ respectively for the different toroidal positions of POINT and SXR arrays

    图 14  内部输运垒建立过程中伴随快离子或热粒子不稳定性事件 (a1), (a2)归一化$\beta_{\rm{N}}$; (b1), (b2)电子$T_{{\rm{e}}}$和离子$T_{{\rm{i}}0}$ 温度; (c1), (c2) ECE诊断测量到的频谱图

    Figure 14.  Energetic ions and thermal pressure gradient instabilities are observed during the establishment of ITBs: (a1), (a2) Normalized $\beta_{\rm{N}}$; (b1), (b2) electron $T_{{\rm{e}}0}$ and $T_{{\rm{i}}0}$ temperatures; (c1), (c2) spectrogram of ECE signal

    图 15  内部输运垒建立过程中温度和旋转剖面 (a) $T_{\rm{i}}$; (b) $R/L_{T_{\rm{i}}}$; (c) $v_\phi$; (d) $\Delta T_{\rm{e}}/T_{\rm{e}}$

    Figure 15.  Profiles of (a) $T_{\rm{i}}$, (b) $R/L_{T_{\rm{i}}}$, (c) $v_\phi$, (d) $\Delta T_{\rm{e}}/T_{\rm{e}}$ for the establishment of ITBs.

    表 1  EAST上离轴锯齿和一般锯齿的对比图

    Table 1.  Direct comparison between the OAS with conventional sawteeth in EAST.

    “锯齿”类型
    离轴锯齿 一般锯齿
    安全因子q 反磁剪切 单调分布
    qmin $q_{\rm{min}} \leqslant 2$ ($q_0 > 1$) $q_0 \leqslant 1$
    先兆模 m/n = 2/1 (D)TM m/n = 1/1 kink
    径向位置/m HFS: $1.7 \leqslant R \leqslant 1.8$
    LFS: $2 \leqslant R \leqslant 2.1 $
    $1.8 \leqslant R \leqslant $2
    $\Delta T_{{\rm{e0}}}/T_{{\rm{e0}}}$ $\geqslant 30{\text{%}}$ $\leqslant 10{\text{%}} $
    “混合半径”
    $D_\alpha$脉冲
    注: EAST上磁轴位置$R_0 \approx 1.9\ {\rm{m}}$, 小半径$a \approx 0.45\ {\rm{m}}$.
    DownLoad: CSV
    Baidu
  • [1]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [2]

    Connor J W, Fukuda T, Garbet X, et al. 2004 Nuclear Fusion 44 R1Google Scholar

    [3]

    Wolf R C 2003 Plasma Phys. Control. Fusion 45 R1Google Scholar

    [4]

    Mazzi S, Garcia J, Zarzoso D, et al. 2022 Nat. Phys. 18 776Google Scholar

    [5]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [6]

    Di Siena A, Bilato R, Görler T, et al. 2021 Phys. Rev. Lett. 127 025002Google Scholar

    [7]

    Koide Y, Kikuchi M, Mori M, Tsuji S, Ishida S, Asakura N, Kamada Y, Nishitani T, Kawano Y, Hatae T, Fujita T, Fukuda T, Sakasai A, Kondoh T, Yoshino R, Neyatani Y 1994 Phys. Rev. Lett. 72 3662Google Scholar

    [8]

    Levinton F M, Zarnstorff M C, Batha S H, Bell M, Bell R E, Budny R V, Bush C, Chang Z, Fredrickson E, Janos A, Manickam J, Ramsey A, Sabbagh S A, Schmidt G L, Synakowski E J, Taylor G 1995 Phys. Rev. Lett. 75 4417Google Scholar

    [9]

    Synakowski E J, Batha S H, Beer M A, Bell M G, Bell R E, Budny R V, Bush C E, Efthimion P C, Hammett G W, Hahm T S, LeBlanc B, Levinton F, Mazzucato E, Park H, Ramsey A T, Rewoldt G, Scott S D, Schmidt G, Tang W M, Taylor G, Zarnstorff M C 1997 Phys. Rev. Lett. 78 2972Google Scholar

    [10]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff M C 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [11]

    Strait E J, Lao L L, Mauel M E, Rice B W, Taylor T S, Burrell K H, Chu M S, Lazarus E A, Osborne T H, Thompson S J, Turnbull A D 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [12]

    Conway G D, Borba D N, Alper B, Bartlett D V, Gormezano C, von Hellermann M G, Maas A C, Parail V V, Smeulders P, Zastrow K D 2000 Phys. Rev. Lett. 84 1463Google Scholar

    [13]

    Crisanti F, Litaudon X, Mailloux J, et al. 2002 Phys. Rev. Lett. 88 145004Google Scholar

    [14]

    Rice J E, Boivin R L, Bonoli P T, Goetz J A, Granetz R S, Greenwald M J, Hutchinson I H, Marmar E S, Schilling G, Snipes J A, Wolfe S M, Wukitch S J, Fiore C L, Irby J H, Mossessian D, Porkolab M 2001 Nuclear Fusion 41 277Google Scholar

    [15]

    Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553Google Scholar

    [16]

    Xu M, Hu L, Zhou T, Zhang L, Xu L, Duan Y, Zang Q, Liu H, Gong X, Xu G, EAST Team 2021 Nuclear Fusion 61 106008Google Scholar

    [17]

    Xu M, Zhao H L, Zang Q, Zhong G Q, Xu L Q, Liu H Q, Chen W, Huang J, Hu L Q, Xu G S, Gong X Z, Qian J P, Liu Y, Zhang T, Zhang Y, Sun Y W, Zhang X D, Wan B N 2019 Nuclear Fusion 59 084005Google Scholar

    [18]

    Xu M, Zhao H, Zhang J, Xu L, Liu H, Li G, Zhong G, Zang Q, Hu L, Gong X, Xu G, Zhang X, Wan B, EAST Team 2020 Nuclear Fusion 60 112005Google Scholar

    [19]

    Xu M, Ma R, Xu L, Li Y, Zhao H, Chen W, Wang S, Li G, Zhong G, Wang F, Jin Y, Huang J, Zang Q, Liu H, Hu L, Gong X, Xu G, Hu J, Wan B, EAST Team 2022 Nuclear Fusion 62 126041Google Scholar

    [20]

    Gorelenkov N N, Berk H L, Fredrickson E, Sharapov S E, Contributors J E 2007 Phys. Lett. A 370 70Google Scholar

    [21]

    Gorelenkov N N, Berk H L, Crocker N A, Fredrickson E D, Kaye S, Kubota S, Park H, Peebles W, Sabbagh S A, Sharapov S E, Stutmat D, Tritz K, Levinton F M, Yuh H, Team T N, Contributors J E 2007 Plasma Phys. Control. Fusion 49 B371Google Scholar

    [22]

    Heidbrink W W, Van Zeeland M A, Austin M E, Bierwage A, Chen L, Choi G J, Lauber P, Lin Z, McKee G R, Spong D A 2020 Nuclear Fusion 61 016029Google Scholar

    [23]

    Ishii Y, Azumi M, Kishimoto Y 2002 Phys. Rev. Lett. 89 205002Google Scholar

    [24]

    Wang Z, Wang X, Dong J, Lei Y, Long Y, Mou Z, Qu W 2007 Phys. Rev. Lett. 99 185004Google Scholar

    [25]

    Janvier M, Kishimoto Y, Li J Q 2011 Phys. Rev. Lett. 107 195001Google Scholar

    [26]

    Wang X, Wang X 2017 Nuclear Fusion 57 016039Google Scholar

    [27]

    Zhang W, Ma Z W, Lu X Q, Zhang H W 2020 Nuclear Fusion 60 126022Google Scholar

    [28]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [29]

    Group I P E 1999 Nuclear Fusion 39 2251Google Scholar

    [30]

    Imbeaux F, Giruzzi G, Maget P, et al. 2006 Phys. Rev. Lett. 96 045004Google Scholar

    [31]

    Maget P, Imbeaux F, Giruzzi G, et al. 2006 Nuclear Fusion 46 797Google Scholar

    [32]

    Maget P, Huysmans G T A, Garbet X, et al. 2007 Phys. Plasmas 14 052509Google Scholar

    [33]

    Wei L, Wang Z X 2014 Phys. Plasmas 21 062505Google Scholar

    [34]

    Wei L, Wang Z X 2014 Nuclear Fusion 54 043015Google Scholar

    [35]

    Zhang W, Ma Z W, Zhu J, Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002Google Scholar

    [36]

    Zhang W, Lin X, Ma Z W, Lu X Q, Zhang H W 2020 Phys. Plasmas 27 122509Google Scholar

    [37]

    Yu Q, Günter S 2022 Nuclear Fusion 62 126056Google Scholar

    [38]

    Kessel C, Manickam J, Rewoldt G, Tang W M 1994 Phys. Rev. Lett. 72 1212Google Scholar

    [39]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D R, Hogeweij G M D, Johnson T, Pueschel M J, Schneider M 2015 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [40]

    Citrin J, Mantica P 2023 Plasma Phys. Control. Fusion 65 033001Google Scholar

    [41]

    Liu P, Wei X, Lin Z, Brochard G, Choi G J, Heidbrink W W, Nicolau J H, McKee G R 2022 Phys. Rev. Lett. 128 185001Google Scholar

    [42]

    Heidbrink W W, Strait E J, Chu M S, Turnbull A D 1993 Phys. Rev. Lett. 71 855Google Scholar

    [43]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [44]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [45]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [46]

    Shi P W, Chen W, Shi Z B, Duan X R, Yang Z C, Ma R R, Zhong W L, Jiang M, Yu L M, Liang A S, Wen J, Yu D L, Liu Y, Yang Q W 2019 Nuclear Fusion 59 066015Google Scholar

    [47]

    Duan S, Fu G Y, Cai H, Li D 2022 Nuclear Fusion 62 056002Google Scholar

    [48]

    Kramer G J, Cheng C Z 2023 Plasma Phys. Control. Fusion 65 015015Google Scholar

    [49]

    Li G, Li Y, Xiao Y 2023 Nuclear Fusion 63 016009Google Scholar

    [50]

    Breizman B N, Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001Google Scholar

    [51]

    Bass E M, Waltz R E 2013 Phys. Plasmas 20 012508Google Scholar

    [52]

    Fasoli A, Testa D, Sharapov S, Berk H L, Breizman B, Gondhalekar A, Heeter R F, Mantsinen M, contributors to the E J W 2002 Plasma Phys. Control. Fusion 44 B159Google Scholar

    [53]

    Chen W, Yu L, Liu Y, Ding X T, Xie H S, Zhu J, Yu L M, Ji X Q, Li J X, Li Y G, Yu D L, Shi Z B, Song X M, Cao J Y, Song S D, Dong Y B, Zhong W L, Jiang M, Cui Z Y, Huang Y, Zhou Y, Dong J Q, Xu M, Xia F, Yan L W, Yang Q W, Duan X R, HL-2A Team 2014 Nuclear Fusion 54 104002Google Scholar

    [54]

    Kramer G J, Gorelenkov N N, Nazikian R, Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23Google Scholar

    [55]

    Xu M, Zhong G, Hao B, Shen W, Hu L, Chen W, Qiu Z, Zhang X, Hu Y, Li Y, Zhao H, Liu H, Lyu B, EAST Team 2021 Chin. Phys. Lett. 38 085201Google Scholar

    [56]

    Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, Thun C P v, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R, Yavorskij V, ITPA EP TG and JET-EFDA Contributors 2013 Nuclear Fusion 53 104022Google Scholar

    [57]

    Qi L, Dong J Q, Bierwage A, Lu G, Sheng Z M 2013 Phys. Plasmas 20 032505Google Scholar

    [58]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N, EAST Team 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [59]

    Chen L, Zonca F 2007 Nuclear Fusion 47 S727Google Scholar

    [60]

    Ma R, Chen L, Zonca F, Li Y, Qiu Z 2022 Plasma Phys. Control. Fusion 64 035019Google Scholar

    [61]

    Ma R, Heidbrink W W, Chen L, Zonca F, Qiu Z 2023 Phys. Plasmas 30 042105Google Scholar

    [62]

    Chavdarovski I, Zonca F 2014 Phys. Plasmas 21 052506Google Scholar

    [63]

    Chen L, Zonca F 2017 Phys. Plasmas 24 072511Google Scholar

    [64]

    Yang Y, Gao X, Liu H Q, Li G Q, Zhang T, Zeng L, Liu Y K, Wu M Q, Kong D F, Ming T F, Han X, Wang Y M, Zang Q, Lyu B, Li Y Y, Duan Y M, Zhong F B, Li K, Xu L Q, Gong X Z, Sun Y W, Qian J P, Ding B J, Liu Z X, Liu F K, Hu C D, Xiang N, Liang Y F, Zhang X D, Wan B N, Li J G, Wan Y X, EAST Team 2017 Plasma Phys. Control. Fusion 59 085003Google Scholar

    [65]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T, Liu Z, Wang Y, Zeng L, Han X, Liu Y, Wu M, Qu H, Shen B, Zang Q, Yu Y, Kong D, Gao W, Zhang L, Cai H, Wu X, Hanada K, Zhong F, Liang Y, Hu C, Liu F, Gong X, Xiao B, Wan B, Zhang X, Li J, EAST Team 2017 Nuclear Fusion 57 056021Google Scholar

    [66]

    Chu Y Q, Liu H Q, Zhang S B, Jie Y X, Lian H, Wu M Q, Zhu X, Wu C B, Xu L Q, Wang Y F, Wang S X, Zhang T, Yang Y, Hanada K, Lyu B, Li Y Y, Zang Q 2021 Plasma Phys. Control. Fusion 63 105003Google Scholar

    [67]

    Han X, Liu Y, Zhou T F, Zhang T, Shi T H, Li Y Y, Yuan Y, Mao S T, Jin Y F, Wu X H, Wang S X, Yang Y, Wen F, Huang J, Liu S C, Ye K X, Wu M F, Geng K N, Li G S, Zhong F B, Xiang H M, Gao X, EAST Team 2022 Nuclear Fusion 62 064005Google Scholar

    [68]

    Liu Z X, Ge W L, Wang F, Liu Y J, Yang Y, Wu M Q, Wang Z X, Zhang X X, Li H, Xie J L, Lan T, Mao W, Liu A D, Zhou C, Ding W X, Zhuang G, Liu W D 2020 Nuclear Fusion 60 122001Google Scholar

    [69]

    Zhang B, Gong X, Qian J, Zeng L, Xu L Q, Duan Y M, Zhang J Y, Hu Y C, Jia T Q, Li P, Liang R R, Wang Z H, Zhu X, Wang S X, Ma Q, Ye L, Huang J, Ding R, EAST Team 2022 Nuclear Fusion 62 126064Google Scholar

    [70]

    Ge W, Wang Z X, Wang F, Liu Z, Xu L 2023 Nuclear Fusion 63 016007Google Scholar

    [71]

    Wang S, Cai H, Chen X, Li D 2023 Plasma Phys. Control. Fusion 65 055018Google Scholar

    [72]

    Wu M, Liu Z, Li G, Han X, Zhang T, Li Y, Zhou T, Chao Y, Wang S, Wu X, Geng K, Xiang H, Zhong F, Ye K, Huang J, Zhou Z, Yang S, Wen F, Wang Y, Zhang S, Zhuang G, Gao X, East Team 2023 Nuclear Fusion 63 016008Google Scholar

    [73]

    Wang J, Wang Z X, Wei L, Liu Y 2017 Nuclear Fusion 57 046007Google Scholar

    [74]

    Brower D L, Peebles W A, Luhmann N C, Savage R L 1985 Phys. Rev. Lett. 54 689Google Scholar

    [75]

    Chen W, Yu D L, Ma R R, Shi P W, Li Y Y, Shi Z B, Du H R, Ji X Q, Jiang M, Yu L M, Yuan B S, Li Y G, Yang Z C, Zhong W L, Qiu Z Y, Ding X T, Dong J Q, Wang Z X, Wei H L, Cao J Y, Song S D, Song X M, Yi L, Yang Q W, Xu M, Duan X R 2018 Nuclear Fusion 58 056004Google Scholar

    [76]

    Du X D, Hong R J, Heidbrink W W, et al. 2021 Phys. Rev. Lett. 127 025001Google Scholar

  • [1] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [2] Hou Yu-Mei, Chen Wei, Zou Yun-Peng, Yu Li-Ming, Shi Zhong-Bing, Duan Xu-Ru. Beta-induced Alfvén eigenmodes with frequency chirping driven by energetic ions in the HL-2A Tokamak. Acta Physica Sinica, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [3] Zou Yun-Peng, Chan Vincent, Chen Wei. Improvement of critical gradient model and establishment of an energetic particle module for integrated simulation. Acta Physica Sinica, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [4] Bao Jian, Zhang Wen-Lu, Li Ding. Global simulations of energetic electron excitation of beta-induced Alfvén eigenmodes. Acta Physica Sinica, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [5] Liu Tai-Qi, Chen Shao-Yong, Mou Mao-Lin, Tang Chang-Jian. Theoretical study of effect of hyper-resistivity on linear stability of ballooning mode. Acta Physica Sinica, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [6] Shen Yong, Dong Jia-Qi, He Hong-Da, Ding Xuan-Tong, Shi Zhong-Bing, Ji Xiao-Quan, Li Jia, Han Ming-Kun, Wu Na, Jiang Min, Wang Shuo, Li Ji-Quan, Xu Min, Duan Xu-Ru. Hollow current and reversed magnetic shear configurations in pellet injection discharges on Huanliuqi 2A tokamak. Acta Physica Sinica, 2021, 70(18): 185201. doi: 10.7498/aps.70.20210641
    [7] Bi Hai-Liang, Wei Lai, Fan Dong-Mei, Zheng Shu, Wang Zheng-Xiong. Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas. Acta Physica Sinica, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [8] Wang Jun, Hu Chun-Dong, Hu Shuang-Hui, Wu Bin, Ding Si-Ye, Wang Jin-Fang. Neutral beam injection induced discrete Alfvn instabilities on experimental advanced superconducting tokamak. Acta Physica Sinica, 2013, 62(3): 035201. doi: 10.7498/aps.62.035201
    [9] Zheng Shu, Zhang Jia-Peng, Duan Ping, Wei Lai, Wang Xian-Qu. Numerical study of double tearing mode instability in viscous plasma. Acta Physica Sinica, 2013, 62(2): 025205. doi: 10.7498/aps.62.025205
    [10] Jian Guang-De, Dong Jia-Qi. Numerical study of kinetic shear Alfvn instability in tokamak plasmas. Acta Physica Sinica, 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [11] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [12] Zhang Jie-Qiu, Liang Chang-Hong, Wang Geng-Guo, Zhu Jia-Zhen. Condition of Alfven Gauss wave-packet evolvement to solitons and criterion of Alfven wave modulation instability. Acta Physica Sinica, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [13] LI WEN-FEI, ZHANG FENG-SHOU. CHEMICAL INSTABILITY AND MECHANICAL INSTABILITY IN ASYMMETRIC NUCLEAR MATTER. Acta Physica Sinica, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [14] HUANG CHAO-SONG, LI JUN. MODE COUPLING OF INTERCHANGE INSTABILITY IN PLASMAS. Acta Physica Sinica, 1992, 41(5): 783-791. doi: 10.7498/aps.41.783
    [15] BIAN BO-DA, LIN JING, GUO SHI-CHONG, CAI SHI-DONG. WHISTLER INSTABILITY WITH WEAKLY RELATIVISTIC TRAPPED ELECTRONS. Acta Physica Sinica, 1990, 39(2): 218-224. doi: 10.7498/aps.39.218
    [16] Xu Xue-qiao, Huo Yu-ping. MACROSCOPICAL BEAM-PLASMA KINK INSTABILITY RESEARCH IN TOKAMAK. Acta Physica Sinica, 1986, 35(10): 1259-1270. doi: 10.7498/aps.35.1259
    [17] WU HAN-MING, PAN LIANG-RU. APPROXIMATE CALCULATION OF THE TILTING MODE INSTABILITY IN AN ELLIPTICAL SPHEROMAK BY VARIATIONAL METHOD. Acta Physica Sinica, 1984, 33(8): 1100-1111. doi: 10.7498/aps.33.1100
    [18] GU YONG-NIAN. KINK INSTABILITIES OF A SHARP BOUNDARY PLASMA WITH SMALL ASPECT RATIO. Acta Physica Sinica, 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [19] XIA MENG-FEN, ZHOU RU-LING. INSTABILITIES DUE TO RUNAWAY ELECTRONS. Acta Physica Sinica, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [20] ZHOU YU-MEI, CAI SHI-DONG. PARAMETRIC INSTABILITIES WITH WELL SEPARATED FREQUENCIES IN MAGNETIZED PLASMA. Acta Physica Sinica, 1980, 29(7): 916-926. doi: 10.7498/aps.29.916
Metrics
  • Abstract views:  2591
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2023
  • Accepted Date:  05 June 2023
  • Available Online:  18 July 2023
  • Published Online:  05 November 2023

/

返回文章
返回
Baidu
map