搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟

张扬 薛创 丁宁 刘海风 宋海峰 张朝辉 王贵林 孙顺凯 宁成 戴自换 束小建

引用本文:
Citation:

聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟

张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建

One-dimensional magneto-hydrodynamic simulation of the magnetic drive isentropic compression experiments on primary test stand

Zhang Yang, Xue Chuang, Ding Ning, Liu Hai-Feng, Song Hai-Feng, Zhang Zhao-Hui, Wang Gui-Lin, Sun Shun-Kai, Ning Cheng, Dai Zi-Huan, Shu Xiao-Jian
PDF
导出引用
  • 国内首台多路并联超高功率脉冲装置聚龙一号(PTS)已被用于磁驱动准等熵实验研究,其分时分组放电特点为开展材料的动高压可控路径加载研究提供了便利.磁驱动准等熵实验的物理设计和结果分析需要依赖可靠的数值模拟平台.本文介绍了含强度计算的一维磁流体力学程序MADE1D的物理模型和程序特点,讨论了聚龙一号装置两种不同电流波形驱动条件下准等熵实验的模拟情况.结果显示,MADE1D程序能够较好地反映电磁力引起的压缩波在样品内部的产生、传播及发展过程,计算获得的样品/窗口界面速度同实验测量结果符合较好.分析发现,电流波形是影响加载过程的重要因素.对于目前使用的带状电极,电流上升率不宜超过40 kA/ns,否则可能在厚度1.2 mm以上的铝样品中产生冲击.
    The 10 MA primary test stand (PTS), the most powerful pulse power generator in China, is used to obtain isentropic compression of Al samples under a pressure of about 100 GPa. The high performance of laser-triggered gas switches enables the precise synchronization of the 24 modules according to the required timing sequence. This advantage makes the PTS a very good platform for dynamic material compression with fundamental capability of pulse shaping. Tens of isentropic compression experiments have been conducted on the PTS, among which two distinct loading profiles were designed and used to obtain distinct compression processes. The first current, which is used to obtain a shockless compression, has a relatively smooth rise, and the rise-rate keeps almost constant during the 400 ns-long compression. The second current shape has a mild rise but a sharp ends, which is designed to make an artificial turn-point in the velocity history, which is helpful for the numerical code verification. The current profile, as well as the sample thickness, is optimized by a one-dimensional magneto-hydrodynamic (1D MHD) code MADE1D coupled with a full circuit model for the PTS. The equation of state and conductivity model used here have a wide coverage in the density, temperature and pressure range. The strength of material and its constitution model are also taken into consideration to simulate the elastic and plastic flow of metal at relatively low pressure and temperature. Compared with the experimental results, the simulated velocity at the sample/window interface is found to agree well with the measurement for most of the cases. This suggests that the MHD simulations with the circuit model are able to reflect the main process of the loading history, and help to analyze and elucidate the phenomena contributing to the compression. It shows that the current waveform is one of the most important factors that affect the loading process. For the PTS and strip-line electrodes it uses, a current rise ratio less than 15 kA/ns helps to obtain a smooth off-Hugoniot pressure rise. The temperature rise due to the pdV work is very small, and most of the sample material, except those in the skin layer where current passes through, keeps solid during the compression. However, for a current rises at 40 kA/ns or more, the ramp loading wave could be sharpened into a shock within the sample thicker than 1.2 mm. Based on the PTS flexibility of pulse shaping, a wide range of desired load processes can be gained by designing and controlling the load current and sample thickness precisely.
      通信作者: 张扬, zhang_yang@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11405012,11675025,91330107)和中国工程物理研究院院长基金(批准号:2014-1-042)资助的课题.
      Corresponding author: Zhang Yang, zhang_yang@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405012, 11675025, 91330107) and the Foundation of President of China Academy of Engineering Physics (Grant No. 2014-1-042).
    [1]

    Hua J S, Jing F Q, Gong Z Z, Tan H, Xu N X, Dong Y B, Chen D Q 2000 Chin. J. High Pressure Phys. 14 195 (in Chinese) [华劲松, 经福谦, 龚自正, 谭华, 徐南仙, 董玉斌, 陈栋泉 2000 高压 14 195]

    [2]

    Sun C W 2005 Detonation Wave and Shock Wave 2 84 (in Chinese) [孙承纬 2005 爆轰波与冲击波 2 84]

    [3]

    Barker L M, Hollenbach R E 1970 J. Appl. Phys. 41 4208

    [4]

    Ding F, Huang S H, Jing F Q, Dong Y B, Li Z R 1990 Chin. J. High Pressure Phys. 4 150 (in Chinese) [丁峰, 黄士辉, 经福谦, 董玉斌, 李泽仁 1990 高压 4 150]

    [5]

    Shen Q, Wang C B, Zhang L M, Hua J S, Tan H, Jing F Q 2002 Acta Phys. Sin. 51 1759 (in Chinese) [沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦 2002 51 1759]

    [6]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 61 135204]

    [7]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [8]

    Davis J, Deeney C, Knudson M D, Lemke R W, Pointon T D, Bliss D E 2005 Phys. Plasmas 12 056310

    [9]

    Seidel D B, Langston W L, Coats R S, Knudson M D, Lemke R W, Davis J, Pointon T D 2009 Proceeding of 17th IEEE International Pulsed Power Conference Washington, DC, USA, June 28-July 2, 2009 1165

    [10]

    Knudson M D 2012 AIP Conf. Proc. 1426 35

    [11]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Spielman R B, Pointon T D, Reisman D B, Toor A, Cauble R C 2001 Rev. Sci. Instrum. 72 3587

    [12]

    Hall C A 2000 Phys. Plasmas 7 2069

    [13]

    Rothman S D, Parker K W, Davis J, Palmer J, Maw J 2004 AIP Conf. Proc. 706 1235

    [14]

    Reisman D B, Torr A, Cauble R C 2001 J. Appl. Phys. 89 1625

    [15]

    Asay J R, Hall C A, Holland K G 2000 AIP Conf. Proc. 505 1151

    [16]

    Davis J, Hayes D B, Asay J R, Watts P W, Flores P A, Reisman D B 2002 AIP Conf. Proc. 620 221

    [17]

    Reisman D B, Forbes J W, Tarver C M, Garcia F, Cauble R C, Hall C A, Asay J R 2002 AIP Conf. Proc. 620 849

    [18]

    Lemke R W, Knudson M D, Davis J 2011 Int. J. Impact Eng. 38 480

    [19]

    Robinson A C, Brunner T A, Carrol S 2008 Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, USA Janary 7-10, 2008 AIAA-2008-1235

    [20]

    Waanders B G B, Eldred M S, Giunta A A, Reese G M, Bhardwaj M K, Fulcher C W 2001 Proc. 19th AIAA Applied Aerodynamics Conference Seattle, USA April 16-19, 2001 AIAA-2001-1625

    [21]

    Struve K W 2008 Proc. 2008 IEEE Int. Power Modulators and High Voltage Conference Las Vegas, USA, May 27-31, 2008 94

    [22]

    Wang G J, Tan F L, Sun C W, Zhao J H, Wang G H, Mo J J, Zhang N, Wang X S, Wu G, Han M 2009 Chin. J. High Pressure Phys. 4 266 (in Chinese) [王桂吉, 谭福利, 孙承纬, 赵剑衡, 王刚华, 莫建军, 张宁, 汪小松, 吴刚, 韩梅 2009 高压 4 266]

    [23]

    Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chin. J. High Pressure Phys. 6 455 (in Chinese) [蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压 6 455]

    [24]

    Wang G J, Zhao J H, Sun C W, Liu C L, Tan F L, Luo B Q, Zhong T, Cai J T, Zhang X P, Chen X M, Wu G, Shui R J, Xu C, Ma X, Deng S Y, Tao Y H 2015 J. Exp. Mech. 30 252 (in Chinese) [王桂吉, 赵剑衡, 孙承纬, 刘仓理, 谭福利, 罗斌强, 种涛, 蔡进涛, 张旭平, 陈学秒, 吴刚, 税荣杰, 胥超, 马骁, 邓顺义, 陶彦辉 2015 力学实验 30 252]

    [25]

    Deng J J, Xie W P, Feng S P, Wang M, Li H T, Song S Y, Xia M H, He A, Tian Q, Gu Y C, Guang Y C, Wei B, Zou W K, Huang X B, Wang L J, Zhang Z H, He Y, Yang L B 2013 IEEE Trans. Plamsa Sci. 41 2580

    [26]

    Wang G L, Guo S, Shen Z W, Zhang Z H, Liu C L, Li J, Zhang Z W, Jia Y S, Zhao X M, Chen H, Feng S P, Ji C, Xia M H, Wei B, Tian Q, Li Y, Ding Y, Guo F 2014 Acta Phys. Sin. 63 196201 (in Chinese) [王贵林, 郭帅, 沈兆武, 张朝辉, 刘仓理, 李军, 章征伟, 贾月松, 赵小明, 陈宏, 丰树平, 计策, 夏明鹤, 卫兵, 田青, 李勇, 丁瑜, 郭帆 2014 63 196201]

    [27]

    Hayes D, Vorthman J, Fritz J 2001 Las Alamos National Laboratory Report No. LA-13830-MS

    [28]

    Hayes D 2001 Sandia National Laboratory Report No. SAND 2001-1440

    [29]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [30]

    Lindemann F A 1911 Phyisics Z 11 609

    [31]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter and Radiation at Extremes 1 123

    [32]

    Kemp A J, Meyer-ter-Vehn J 1999 MPQeos A New Equation of State Code for Hot, Dense Matter (short documentation, version 20)

    [33]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [34]

    Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Shu X J 2016 High Power Laser and Particle Beams 28 015014 (in Chinese) [薛创, 丁宁, 张扬, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014]

    [35]

    Xue C, Ning C, Zhang Y, Xiao D L, Sun S K, Huang J, Ding N, Shu X J 2011 High Power Laser and Particle Beams 23 2391 (in Chinese) [薛创, 宁成, 张扬, 肖德龙, 孙顺凯, 黄俊, 丁宁, 束小建 2011 强激光与粒子束 23 2391]

  • [1]

    Hua J S, Jing F Q, Gong Z Z, Tan H, Xu N X, Dong Y B, Chen D Q 2000 Chin. J. High Pressure Phys. 14 195 (in Chinese) [华劲松, 经福谦, 龚自正, 谭华, 徐南仙, 董玉斌, 陈栋泉 2000 高压 14 195]

    [2]

    Sun C W 2005 Detonation Wave and Shock Wave 2 84 (in Chinese) [孙承纬 2005 爆轰波与冲击波 2 84]

    [3]

    Barker L M, Hollenbach R E 1970 J. Appl. Phys. 41 4208

    [4]

    Ding F, Huang S H, Jing F Q, Dong Y B, Li Z R 1990 Chin. J. High Pressure Phys. 4 150 (in Chinese) [丁峰, 黄士辉, 经福谦, 董玉斌, 李泽仁 1990 高压 4 150]

    [5]

    Shen Q, Wang C B, Zhang L M, Hua J S, Tan H, Jing F Q 2002 Acta Phys. Sin. 51 1759 (in Chinese) [沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦 2002 51 1759]

    [6]

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 61 135204]

    [7]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [8]

    Davis J, Deeney C, Knudson M D, Lemke R W, Pointon T D, Bliss D E 2005 Phys. Plasmas 12 056310

    [9]

    Seidel D B, Langston W L, Coats R S, Knudson M D, Lemke R W, Davis J, Pointon T D 2009 Proceeding of 17th IEEE International Pulsed Power Conference Washington, DC, USA, June 28-July 2, 2009 1165

    [10]

    Knudson M D 2012 AIP Conf. Proc. 1426 35

    [11]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Spielman R B, Pointon T D, Reisman D B, Toor A, Cauble R C 2001 Rev. Sci. Instrum. 72 3587

    [12]

    Hall C A 2000 Phys. Plasmas 7 2069

    [13]

    Rothman S D, Parker K W, Davis J, Palmer J, Maw J 2004 AIP Conf. Proc. 706 1235

    [14]

    Reisman D B, Torr A, Cauble R C 2001 J. Appl. Phys. 89 1625

    [15]

    Asay J R, Hall C A, Holland K G 2000 AIP Conf. Proc. 505 1151

    [16]

    Davis J, Hayes D B, Asay J R, Watts P W, Flores P A, Reisman D B 2002 AIP Conf. Proc. 620 221

    [17]

    Reisman D B, Forbes J W, Tarver C M, Garcia F, Cauble R C, Hall C A, Asay J R 2002 AIP Conf. Proc. 620 849

    [18]

    Lemke R W, Knudson M D, Davis J 2011 Int. J. Impact Eng. 38 480

    [19]

    Robinson A C, Brunner T A, Carrol S 2008 Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, USA Janary 7-10, 2008 AIAA-2008-1235

    [20]

    Waanders B G B, Eldred M S, Giunta A A, Reese G M, Bhardwaj M K, Fulcher C W 2001 Proc. 19th AIAA Applied Aerodynamics Conference Seattle, USA April 16-19, 2001 AIAA-2001-1625

    [21]

    Struve K W 2008 Proc. 2008 IEEE Int. Power Modulators and High Voltage Conference Las Vegas, USA, May 27-31, 2008 94

    [22]

    Wang G J, Tan F L, Sun C W, Zhao J H, Wang G H, Mo J J, Zhang N, Wang X S, Wu G, Han M 2009 Chin. J. High Pressure Phys. 4 266 (in Chinese) [王桂吉, 谭福利, 孙承纬, 赵剑衡, 王刚华, 莫建军, 张宁, 汪小松, 吴刚, 韩梅 2009 高压 4 266]

    [23]

    Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chin. J. High Pressure Phys. 6 455 (in Chinese) [蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压 6 455]

    [24]

    Wang G J, Zhao J H, Sun C W, Liu C L, Tan F L, Luo B Q, Zhong T, Cai J T, Zhang X P, Chen X M, Wu G, Shui R J, Xu C, Ma X, Deng S Y, Tao Y H 2015 J. Exp. Mech. 30 252 (in Chinese) [王桂吉, 赵剑衡, 孙承纬, 刘仓理, 谭福利, 罗斌强, 种涛, 蔡进涛, 张旭平, 陈学秒, 吴刚, 税荣杰, 胥超, 马骁, 邓顺义, 陶彦辉 2015 力学实验 30 252]

    [25]

    Deng J J, Xie W P, Feng S P, Wang M, Li H T, Song S Y, Xia M H, He A, Tian Q, Gu Y C, Guang Y C, Wei B, Zou W K, Huang X B, Wang L J, Zhang Z H, He Y, Yang L B 2013 IEEE Trans. Plamsa Sci. 41 2580

    [26]

    Wang G L, Guo S, Shen Z W, Zhang Z H, Liu C L, Li J, Zhang Z W, Jia Y S, Zhao X M, Chen H, Feng S P, Ji C, Xia M H, Wei B, Tian Q, Li Y, Ding Y, Guo F 2014 Acta Phys. Sin. 63 196201 (in Chinese) [王贵林, 郭帅, 沈兆武, 张朝辉, 刘仓理, 李军, 章征伟, 贾月松, 赵小明, 陈宏, 丰树平, 计策, 夏明鹤, 卫兵, 田青, 李勇, 丁瑜, 郭帆 2014 63 196201]

    [27]

    Hayes D, Vorthman J, Fritz J 2001 Las Alamos National Laboratory Report No. LA-13830-MS

    [28]

    Hayes D 2001 Sandia National Laboratory Report No. SAND 2001-1440

    [29]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [30]

    Lindemann F A 1911 Phyisics Z 11 609

    [31]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter and Radiation at Extremes 1 123

    [32]

    Kemp A J, Meyer-ter-Vehn J 1999 MPQeos A New Equation of State Code for Hot, Dense Matter (short documentation, version 20)

    [33]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [34]

    Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Shu X J 2016 High Power Laser and Particle Beams 28 015014 (in Chinese) [薛创, 丁宁, 张扬, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014]

    [35]

    Xue C, Ning C, Zhang Y, Xiao D L, Sun S K, Huang J, Ding N, Shu X J 2011 High Power Laser and Particle Beams 23 2391 (in Chinese) [薛创, 宁成, 张扬, 肖德龙, 孙顺凯, 黄俊, 丁宁, 束小建 2011 强激光与粒子束 23 2391]

  • [1] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述.  , 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [2] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [3] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展.  , 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [4] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型.  , 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [5] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国. FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟.  , 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [6] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟.  , 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [7] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟.  , 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [8] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究.  , 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [9] 吴坚, 王亮平, 李沫, 吴刚, 邱孟通, 杨海亮, 李兴文, 邱爱慈. 强光一号兆安电流钨丝X箍缩实验研究.  , 2014, 63(3): 035205. doi: 10.7498/aps.63.035205
    [10] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述.  , 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [11] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展.  , 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [12] 王贵林, 郭帅, 沈兆武, 张朝辉, 刘仓理, 李军, 章征伟, 贾月松, 赵小明, 陈宏, 丰树平, 计策, 夏明鹤, 卫兵, 田青, 李勇, 丁瑜, 郭帆. 基于聚龙一号装置的超高速飞片发射实验研究进展.  , 2014, 63(19): 196201. doi: 10.7498/aps.63.196201
    [13] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋. 激光驱动气库靶对铝的准等熵压缩实验研究.  , 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [14] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究.  , 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [15] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究.  , 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [16] 宁 成, 丁 宁, 杨震华. “强光一号”装置上部分Z箍缩实验结果的物理分析.  , 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [17] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波.  , 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟.  , 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] 陈仁. 关于磁流体力学激波中的开闸激震与关闸激震是否存在的问题.  , 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
    [20] 束星北. 流体力学的一个定理及在气象学上的应用(大气温度直降率的变化及对流顶同质点造成的条件).  , 1955, 11(1): 1-17. doi: 10.7498/aps.11.1
计量
  • 文章访问数:  6467
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-10-20
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map