Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A compact model of shield-gate trench MOSFET based on BSIM4

Jiang Yi-Xun Qiao Ming Gao Wen-Ming He Xiao-Dong Feng Jun-Bo Zhang Sen Zhang Bo

Citation:

A compact model of shield-gate trench MOSFET based on BSIM4

Jiang Yi-Xun, Qiao Ming, Gao Wen-Ming, He Xiao-Dong, Feng Jun-Bo, Zhang Sen, Zhang Bo
PDF
HTML
Get Citation
  • Shield-gate trench MOSFET in a low-to-medium voltage range (12-250 V) plays a key role in the power conversion market due to its low power loss caused by the sheild-gate structure. In order to eliminate the faults resulting from the parasitic effects of the device and improve the conversion efficiency, the device model is indispensable in designing a circuit system. In this paper, a compact model of shield-gate trench MOSFET based on BSIM4 is proposed, including the DC model and the capacitance model. In the DC model, the basic MOSFET structure uses BSIM4, and the equivalent resistances of the basic MOSFET in series are divided into three parts. The equivalent resistance model of JFET region is established by using the electric potential difference between both ends for the first time, and the equivalent resistance model of electron diffusion region is also introduced, in order to solve the problem of current error caused by neglecting the source potential of JFET region. The equivalent resistance between drain and JFET region and the equivalent resistance of electron diffusion region both prove to be constant. In the capacitance model based on BSIM4, the model of shield-gate to drain capacitance is added to the model of drain to source capacitance, and the voltage bias between drain and gate in the model of gate to drain capacitance is modified into the potential difference between the node at the end of the gate-drift overlap region and the gate. Poisson equations are used to solve the electric potential of this node. Furthermore, the gate oxide thickness factor k1, the shield-gate oxide thickness factor k2, the equivalent length of gate-drift overlap Lovequ and the equivalent length of shield-gate LSHequ are introduced to redefine the position of gate and shield-gate, thereby simplifying the Poisson equations and ensuring the smoothness of the potential curve of the node. Comparison of the data from the simulation by using Verilog-A program with the test results from the experimental platform shows that the model simulation results fit well with the test data, Therefore, the proposed model is verified.
      Corresponding author: Qiao Ming, qiaoming@uestc.edu.cn
    [1]

    Wang Y, Hu H F, Yu C H, Wei J T 2015 IET Power Electronics 8 678Google Scholar

    [2]

    Sarkar T, Sapp S, Challa A 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, USA, March 17−21, 2013 p507

    [3]

    Park C, Havanur S, Shibib A, Terrill K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12–16, 2016 p387

    [4]

    Tong C F, Cortes I, Mawby P A, Covington J A, Morancho F 2009 IEEE Spanish Conference on Electron Devices Santiago de Compostela Santiago de Compostela, Spain, February 11–13, 2009 p250

    [5]

    Choi W, Son D, Young S 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Orlando, USA, February 5–9, 2012 p1676

    [6]

    Wang Y, Yu C H, Li M S, Cao F, Liu Y J 2017 IEEE Trans. Electron Devices 64 1455Google Scholar

    [7]

    Bao J, Qi H, Zhang J, Zhang Y, Hao Z 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference Chongqing, China, August 20–22, 2011 p245

    [8]

    王磊, 杨华岳 2010 59 0571Google Scholar

    Wang L, Yang Y H 2010 Acta Phys. Sin. 59 0571Google Scholar

    [9]

    Shi L, Jia K, Sun W 2013 IEEE Trans. Electron Devices 60 346Google Scholar

    [10]

    Tanaka A, Oritsuki Y, Kikuchihara H, Miyake M 2011 IEEE Trans. Electron Devices 58 2072Google Scholar

    [11]

    Victory J, Pearson S, Benczkowski S, Sarkar T, Jang H, Yazdi M B, Mao K 2016 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p219

    [12]

    Xiao Y, Victory J, Pearson S, Sarkar T, Challa A, Dagan M, Collanton P, Andreev C 2019 34th Annual IEEE Applied Power Electronics Conference and Exposition Anaheim, USA, March 17–21, 2019 p508

    [13]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M http://cmosedu.com/cmos1/BSIM4_manual. pdf[2020-1-28]

    [14]

    巴利伽 B J 著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第197—198页

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp197–198 (in Chinese)

    [15]

    Klein P 1997 IEEE Trans. Electron Devices 44 1483Google Scholar

    [16]

    Daniel B J, Parikh C D, Patil M B 2002 IEEE Trans. Electron Devices 49 916Google Scholar

    [17]

    Arribas A P, Shang F, Krishnamurthy M, Shenai K 2015 IEEE Trans. Electron Devices 62 1449Google Scholar

    [18]

    Ren M, Chen Z, Niu B, Cao X, Li S, Li Z, Zhang B 2016 IEEE International Nanoelectronics Conference (INEC) Chengdu, China, May 9–11, 2016 p1

    [19]

    Chauhan Y S, Gillon R, Declercq M, Ionescu A M 2007 37th European Solid State Device Research Conference Munich, Germany, September 11–13, 2007 p426

    [20]

    Shenai K 1991 IEEE Trans. Power Electron 6 539Google Scholar

    [21]

    Agarwal H, Gupta C, Goel R, Kushwaha P, Lin Y K, Kao M Y, Duarte J P, Chang H L, Chauhan Y S, Salahuddin S, Hu C 2019 IEEE Trans. Electron Devices 66 4258Google Scholar

    [22]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B, Li Z, Zhang B 2019 IEEE Trans. Electron Devices 66 1416Google Scholar

  • 图 1  SGT MOS的等效电阻分布(a)和直流等效电路(b)

    Figure 1.  (a) Distribution of equivalent resistance of SGT MOS; (b) equivalent DC circuit of SGT MOS.

    图 2  SGT MOS的电容和电荷的分布(a)及电容等效电路(b)

    Figure 2.  (a) Distribution of capacitance and charge of SGT MOS; (b) equivalent capacitance circuit of SGT MOS.

    图 3  SGT MOS栅和屏蔽栅 (a) 等效前的结构示意图和 (b) 等效后的结构示意图

    Figure 3.  Schematic diagrams of structure before equivalence (a) and after equivalence (b).

    图 4  25 ℃下的 (a) 转移特性曲线, (b) 跨导Gm曲线, (c) 输出特性曲线和 (d) 输出电导GDS曲线

    Figure 4.  The curves of (a) transfer characteristic, (b) transconductance Gm, (c) output characteristic and (d) output conductance GDS at 25 ℃.

    图 5  150 ℃下的 (a) 转移特性曲线, (b) 跨导Gm曲线, (c) 输出特性曲线和 (d) 输出电导GDS曲线

    Figure 5.  The curves of (a) transfer characteristic, (b) transconductance Gm, (c) output characteristic and (d) output conductance GDS at 150 ℃.

    图 6  电容-偏压变化曲线 (a) CGD-VDS曲线; (b) CGS-VDS曲线; (c) CDS-VDS曲线; (d) Ciss, Coss, Crss关于VDS的曲线

    Figure 6.  Capacitance curves on bias voltage: (a) Curve of CGD on VDS; (b) curve of CGS on VDS; (c) curve of CDS on VDS; (d) curves of Ciss, Coss and Crss on VDS.

    图 7  开关特性验证 (a) 测试电路; (b) 工作电流Ion = 10 A下的开关特性曲线

    Figure 7.  Verification of switching characteristic: (a) Switching characteristic test circuit; (b) switching characteristic curve at Ion = 10 A

    表 1  SGT MOS的尺寸

    Table 1.  The size of SGT MOS.

    参数名含义大小/μm
    tox栅氧厚度0.07
    ti屏蔽栅与漂移区间氧化层厚度0.18
    ts槽右侧漂移区宽度0.30
    tDB屏蔽栅底部与漂移区的距离0.07
    Lch沟道长度0.53
    Lov栅与漂移区重叠部分的长度0.10
    LDT栅与屏蔽栅间距0.52
    LSH屏蔽栅长度0.87
    Wcell元胞宽度1.20
    DownLoad: CSV
    Baidu
  • [1]

    Wang Y, Hu H F, Yu C H, Wei J T 2015 IET Power Electronics 8 678Google Scholar

    [2]

    Sarkar T, Sapp S, Challa A 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, USA, March 17−21, 2013 p507

    [3]

    Park C, Havanur S, Shibib A, Terrill K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12–16, 2016 p387

    [4]

    Tong C F, Cortes I, Mawby P A, Covington J A, Morancho F 2009 IEEE Spanish Conference on Electron Devices Santiago de Compostela Santiago de Compostela, Spain, February 11–13, 2009 p250

    [5]

    Choi W, Son D, Young S 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Orlando, USA, February 5–9, 2012 p1676

    [6]

    Wang Y, Yu C H, Li M S, Cao F, Liu Y J 2017 IEEE Trans. Electron Devices 64 1455Google Scholar

    [7]

    Bao J, Qi H, Zhang J, Zhang Y, Hao Z 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference Chongqing, China, August 20–22, 2011 p245

    [8]

    王磊, 杨华岳 2010 59 0571Google Scholar

    Wang L, Yang Y H 2010 Acta Phys. Sin. 59 0571Google Scholar

    [9]

    Shi L, Jia K, Sun W 2013 IEEE Trans. Electron Devices 60 346Google Scholar

    [10]

    Tanaka A, Oritsuki Y, Kikuchihara H, Miyake M 2011 IEEE Trans. Electron Devices 58 2072Google Scholar

    [11]

    Victory J, Pearson S, Benczkowski S, Sarkar T, Jang H, Yazdi M B, Mao K 2016 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p219

    [12]

    Xiao Y, Victory J, Pearson S, Sarkar T, Challa A, Dagan M, Collanton P, Andreev C 2019 34th Annual IEEE Applied Power Electronics Conference and Exposition Anaheim, USA, March 17–21, 2019 p508

    [13]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M http://cmosedu.com/cmos1/BSIM4_manual. pdf[2020-1-28]

    [14]

    巴利伽 B J 著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第197—198页

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp197–198 (in Chinese)

    [15]

    Klein P 1997 IEEE Trans. Electron Devices 44 1483Google Scholar

    [16]

    Daniel B J, Parikh C D, Patil M B 2002 IEEE Trans. Electron Devices 49 916Google Scholar

    [17]

    Arribas A P, Shang F, Krishnamurthy M, Shenai K 2015 IEEE Trans. Electron Devices 62 1449Google Scholar

    [18]

    Ren M, Chen Z, Niu B, Cao X, Li S, Li Z, Zhang B 2016 IEEE International Nanoelectronics Conference (INEC) Chengdu, China, May 9–11, 2016 p1

    [19]

    Chauhan Y S, Gillon R, Declercq M, Ionescu A M 2007 37th European Solid State Device Research Conference Munich, Germany, September 11–13, 2007 p426

    [20]

    Shenai K 1991 IEEE Trans. Power Electron 6 539Google Scholar

    [21]

    Agarwal H, Gupta C, Goel R, Kushwaha P, Lin Y K, Kao M Y, Duarte J P, Chang H L, Chauhan Y S, Salahuddin S, Hu C 2019 IEEE Trans. Electron Devices 66 4258Google Scholar

    [22]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B, Li Z, Zhang B 2019 IEEE Trans. Electron Devices 66 1416Google Scholar

  • [1] Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin. Design of compact high resolution imaging system for cold atom experiments. Acta Physica Sinica, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] Su Le, Wang Cai-Lin, Yang Wu-Hua, Liang Xiao-Gang, Zhang Chao. Analytically modeling electric field of shielded gate trench metal-oxide-semiconductor field effect transistor. Acta Physica Sinica, 2023, 72(14): 148501. doi: 10.7498/aps.72.20230550
    [3] Sun Shu-Peng, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Compact broadband bandpass filter with wide stopband based on halberd-shaped spoof surface plasmon polariton. Acta Physica Sinica, 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [4] Lu Meng-Jia, Yun Bin-Feng. Silicon-based compact mode converter using bricked subwavelength grating. Acta Physica Sinica, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [5] Guo Jian-Fei, Li Hao, Wang Zi-Ming, Zhong Ming-Hao, Chang Shuai-Jun, Ou Shu-Ji, Ma Hai-Lun, Liu Li. Failure mechanism of double-trench (DT) 4H-SiC power MOSFET under unclamped inductive switch test. Acta Physica Sinica, 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [6] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of a femtosecond electron diffractometer with adjustable gaps. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [7] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Two-dimensional analytical model of dual material gate strained Si SOI MOSFET with asymmetric Halo. Acta Physica Sinica, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [8] Cao Lei, Liu Hong-Xia. Study of the SOI MOSFET characteristics of high-k gate dielectric with quantum effect. Acta Physica Sinica, 2012, 61(24): 247303. doi: 10.7498/aps.61.247303
    [9] Li Cong, Zhuang Yi-Qi, Han Ru, Zhang Li, Bao Jun-Lin. Analytical modeling of asymmetric HALO-doped surrounding-gate MOSFET with gate overlapped lightly-doped drain. Acta Physica Sinica, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [10] Li Jin, Liu Hong-Xia, Li Bin, Cao Lei, Yuan Bo. Threshold voltage analytical model for strained Si SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [11] Liu Huan, Gong Ma-Li. Compact LD end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [12] Liu Huan, Gong Ma-Li. Compact laser diode end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [13] Luan Su-Zhen, Liu Hong-Xia, Jia Ren-Xu, Cai Nai-Qiong, Wang Jin. The impact of high-k dielectrics on the performance of Schottky barrier source/drain (SBSD) ultra-thin body (UTB) SOI MOSFET. Acta Physica Sinica, 2008, 57(7): 4476-4481. doi: 10.7498/aps.57.4476
    [14] Luan Su-Zhen, Liu Hong-Xia, Jia Ren-Xu, Cai Nai-Qiong. 2-D analytical modeling of dual material gate fully depleted SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [15] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [16] Xu Jing-Ping, Li Chun-Xia, Wu Hai-Ping. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Physica Sinica, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [17] Lin Bao-Qin, Xu Li-Jun, Yuan Nai-Chang. Uniplanar compact photonic band-gap on uniaxial anisotropic substrate. Acta Physica Sinica, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [18] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] Xu Chang-Fa, Yang Yin-Tang, Liu Li. . Acta Physica Sinica, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [20] FENG SHI-DE, MICHIHISA TSUTAHARA. SIMULATION OF SHOCK WAVES USING A LATTICE BOLTZMANN EQUATION MODEL. Acta Physica Sinica, 2001, 50(6): 1006-1010. doi: 10.7498/aps.50.1006
Metrics
  • Abstract views:  9222
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2020
  • Accepted Date:  29 May 2020
  • Available Online:  29 May 2020
  • Published Online:  05 September 2020

/

返回文章
返回
Baidu
map